

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Flowtracks 1.0 documentation

Welcome to Flowtracks’s documentation!

Flowtracks is a Python package for manipulating a trajectory database
obtained from 3D Particle Tracking Velocimetry (3D-PTV) analysis. It
understands the most common output formats for 3D-PTV trajectories used in
the 3D-PTV community, and adds its own HDF5-based format, which allows faster
and more flexible access to the trajectory database.

Contents:

Contents

	Welcome to Flowtracks’s documentation!

	Getting Started
	Obtaining the package and its dependencies

	Installation

	Documentation

	Examples

	Analysis Script

	General Facilities
	Data structures

	Input and Output

	Basic Analysis and display

	HDF5-based fast databases

	Manipulating text formats directly

	Indices and tables

Getting Started

Obtaining the package and its dependencies

The most recent version of this package may be found under the auspices of
the OpenPTV project, in its Github repository,

https://github.com/OpenPTV/postptv

Dependencies:

	The software depends on the SciPy package, obtainable from
http://www.scipy.org/

	Some features depend on the Matplotlib package. Users which need those
features may get Matplotlib at http://matplotlib.org/

Installation

To install this package, follow the standard procedure for installing
Python modules. Using a terminal, change directory into the root directory
of theis program’s source code, then run

python setup.py install

Note that you may need administrative privileges on the machine you are
using.

The install script will install the Python package in the default place for
your platform. Additionally, it will install example scripts in a
subdirectory flowtracks-examples/ under the default executable location,
and a the documentation in the default package root. For information on where
these directories are on your platform (and how to change them), refer to
the Python documentation [https://docs.python.org/2/install/index.html]. Other standard features of the setup script are
also described therein.

Documentation

This documentation is available in the source directory under the docs/
subdirectory. It is maintained as a Sphinx [http://sphinx-doc.org/] project, so that you can build
the documentation in one of several output formats, including HTML and PDF.
To build, install Sphinx, then use

or replace html with any other builder supported by Sphinx.

Alternatively, the documentation is pre-built and available online on
ReadTheDocs [http://flowtracks.readthedocs.org].

Examples

The examples/ subdirectory in the source distribution contains two
IPython notebooks, both available as HTML for direct viewing:

	a tutorial to the basic HDF5 analysis workflow
(HTML).

	a demonstration of using the flowtracks.interpolation module
(HTML).

Analysis Script

The script analyse_fhdf.py is installed by default. for instruction on
its usage, run:

analyse_fhdf.py --help

As the help message printed informs, there are two mandatory command-line
arguments. One is the data file for processing, the other is a config file
with some rudimentary metadata. Examples for both are supplied in the data/
subdirectory of this package. A config file accepted by the script looks
something like this:

[Particle]
density = 1450
diameter = 500e-6

[Scene]
particles file = particles.h5
tracers file = tracers.h5
first frame = 10001
last frame = 10200
frame rate = 500

the file above may be used for producing an analysis from the files in the
data/ subdirectory, when it is the current directory. this has been done
in both IPython examples mentioned above, where the usage is shown.

General Facilities

Data structures

the most basic building blocks of any analysis are sets of particles
representing a slice of the database. These are represented by a ParticleSet
instance. ParticleSet is a flexible class. It holds a number of numpy arrays
whose first dimension must have the same length; each is a column in a table
of particle properties, whose each row represents one particle’s data. It
must contain particles’ position and velocity data, but users may add more
properties as relevant to their database. For details, ssee the ParticleSet
documentation.

The two most common ways to slice a database are by frame (time point) and by
trajectory (data fore the same particle over several frames). For this there
are two classes provided by flowtracks, both derived from ParticleSet and
thus behave in a similar way. They both expect the time and trajid
(trajtectory ID) properties to exist for the particle data, but each class
treats these properties differently.

ParticleSnapshot is a ParticleSet which assumes that all particles have the
same time, so that this property is scalar. Similarly, the Trajectory
class expects a same trajid across its data. A trajectory ID is simply an
integer number unique to each trajectory. Users may select their numbering
scheme when creating Trajectory objects from scratch, but in most cases the
data is read from a file, in which case Flowtracks’ input rutines handle the
numbering automatically.

Refer to Modules Containing Flowtracks Basic Data Structures for the details of all these classes.

Input and Output

The module flowtracks.io provides several functions for reading and writing
particle data. The currently-supported formats are:

	ptv_is - the format output by OpenPTV code as well as the older but still
widely used 3DPTV. Composed of one file per frame, containing a particle’s
number, its number in the previous and next frame file, and current
position.

	xuap - a similar format using one file per frame with columns for position,
velocity, and acceleration for both the particle and the surrounding fluid.
This file format represents an initial analysis of ptv_is raw data.

	acc - another frame-files format with each particle having, additionally
to data provided in the xuap format, the time step relative to the
trajectory start.

	mat - a Matlab file containing a list of trajectory structure-arrays with
xuap-like data for each trajectory.

	hdf - Flowtracks’ own optimised format, relying on the HDF5 file format
and the PyTables package for fast handling thereof. It is highly
recommended to use the other reading/writing functions in order to
convert data in other formats to this format. This allows users a more
flexible programmatic interface as well as the speed of PyTables.

Description of the relevant functions, as well as some other IO convenience
facilities may be found in the module’s reference documentation.

Basic Analysis and display

The package provides some facilities for analysing the database and
extracting kinematic or dynamic information embedded in it. Dynamic analysis
requires the particle size and diameter to be known (Flowtracks assumes a
spherical particle for these analyses, but users may extend this behaviour).
These properties may be stored in the Particle class provided by the
package. flowtracks.io provides a way to read them from an INI file.

The flowtracks.interpolation module provides an object-oriented approach
to interpolating the data. It offers some built-in interpolation methods, and
is hoped to be extensible to other methods without much effort.

Some plotting support is provided by flowtracks.graphics. Functions
therein allow users to generate probability distributions from data and to
plot them using Matplotlib, and a function is provided that plots 3D vector
data as 3 subplots of components.

Other facilities (smoothing,
nearest-neighbour searches) are described in the
respective module’s documentation.

HDF5-based fast databases

Above the layer of basic data structures, Flowtracks provides a generalized
view of a scene, containing several trajectories across a number of frames.
This view is iterable in several ways and provides general metadata access.

The Scene class is the most basic form of this
view. It is tied to one HDF5 file exactly, which holds the database. This
file may be iterated by trajectory, by frame, or by segments, a concept
introduced by Flowtracks for easier time-derived analyses requiring the next
time-point to be also known.

A segment, in the context of iterating a Scene
is a tuple containing two ParticleSnapshot()
objects, one for the current frame and one for the next. The next frame data
is filtered to contain only particles that also appear in the current frame,
unlike when iterating simply by frames.

The DualScene class extends this by tying itself
into two HDF5 files, each representing a separate class of particles which
coexist in the same experiment. This has been useful for measuring tracers
and inertial particles simultaneously, but other users are of course
possible. Iterating by frames is supported here, providing a
Frame object on each iteration. Iterating by
trajectories is ambiguous and not supported currently. Segments iteration,
similarly to the frames iteration, returns two
Frame objects.

The flowtracks.analysis module provides a function for applying analyser
classes sequentially to segments iterated over, and generetes a properly
sized HDF5 file in the format of the input file.

AnalysedScene objects track simultaneously the
DualScene and an analysis file resulting from it. They contain the
collect() facility. It allows
finding of all (or selected) data belonging to a certain property, regardless
of which of the files it is stored in.

Manipulating text formats directly

Similarly to the DualScene class used with the
HDF5 format, the Sequence class tracks two
sets of particles and allows iterating by frame. Since this class relies
on Trajectory lists as its underlying
database, it does not provide a special facility for iterating over
trajectories.

Though Sequence also accepts trajectory
iterators, and flowtracks.io provides you with iterators if asked,
the working memory used in actuality may still be large and the access times
are much slower than the equivalent times achieved by the specialized HDF5
classes.

Corresponding to the flowtracks.analysis module,
Sequence provides the
map_trajectories() method for applying
callback functions on an entire scene, frame by frame.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flowtracks 1.0 documentation

Modules Containing Flowtracks Basic Data Structures

The data structures of ParticleSet and its children, ParticleSnapshot
(for frames) and Trajectory (for trajectories) are found in the module
flowtracks.trajectory. Also in the modules are some functions to create
and manipulate these structures. This page provides a reference for the content
of this module.

	
class flowtracks.trajectory.Frame[source]

	This is basically a structure with no fancy behaviour. When it is
returned from a Flowtracks function, it has two attributes, particles
and tracers - each pointing to a ParticleSnapshot object
holding data for particles of the respective type.

	
class flowtracks.trajectory.ParticleSet(pos, velocity, **kwds)[source]

	A base class for manipulting particle data. Knows how many particles it
has, and holds a varying number of particle properties, each given for
the entire set. Properties may be created at construction time or later.

When a property is created, it gets a setter method of the same name and
a getter method prefixed with set_. This applies also for mandatory
properties.

Arguments

	pos: a (t,3) array, the position of one particle in t time-points,
[m].

	velocity: (t,3) array, corresponding velocity, [m/s].

	kwds: keyword arguments should be arrays whose first dimension == t.
these are treated as extra attributes to be sliced when creating
segments.

	
__len__()[source]

	Return the number of particles in the set.

	
as_dict()[source]

	Returns a dictionary with the “business” properties only, without all
the Python bookkeeping and other stuff in the __dict__.

	
create_property(propname, init_val)[source]

	Add a property of the set, expected to be an array whose
shape[0] == len(self).

Creates the method <propname>(self, selector=None). If selector is
given, it will return only the selected time-points. Also creates
set_<propname>(self, value, selector=None) which sets either
the value over the entire trajectory or just for the selected time
points (this requires the property to already exist for the full
trajectory).

Arguments

	propname: a string, should be a valid Python identifier.

	init_val: the initial value for the property.

	
ext_schema()[source]

	Extended schema. Like schema() but the values of the returned
dictionary are a tuple (type, shape). The shape is scalar, so it only
supports 1D or 0D items.

	
has_property(propname)[source]

	Checks whether the looked-after property propname exists for this
particle set.

	
schema()[source]

	Creates a dictionary keyed by property name whose values are the shape
of one particle’s value for that property. Example: {‘pos’: (3,),
‘velocity’: (3,)}

	
class flowtracks.trajectory.ParticleSnapshot(pos, velocity, time, trajid, **kwds)[source]

	This is one of the two main classes used for iteration over a scene. It
inherits from ParticleSet with the added demand for a scalar
time and a trajid property for trajectory ID (an integer unique
among the scene’s trajectories).

Arguments

	pos: a (p,3) array, the position of one particle of p, [m].

	velocity: (p,3) array, corresponding velocity, [m/s].

	trajid: (p,3) array, for each particle in the snapshot, the unique
identifier of the trajectory it belongs to.

	time: scalar, the identifier of the frame from which this snapshot
is taken.

	kwds: keyword arguments should be arrays whose first dimension == p.
these are treated as extra attributes to be sliced when creating
segments.

	
class flowtracks.trajectory.Trajectory(pos, velocity, time, trajid, **kwds)[source]

	This is one of the two main classes used for iteration over a scene. It
inherits from ParticleSet with the added demand that a scalar
trajectory ID (an integer unique amond the scene’s trajectories) and a
time property.

Arguments

	pos: a (t,3) array, the position of one particle in t time-points,
[m].

	velocity: (t,3) array, corresponding velocity, [m/s].

	time: (t,) array, the clock ticks. No specific units needed.

	trajid: the unique identifier of this trajectory in the set of
trajectories that belong to the same sequence.

	kwds: keyword arguments should be arrays whose first dimension == t.
these are treated as extra attributes to be sliced when creating
segments.

	
__getitem__(selector)[source]

	Gets the data for time points selected as a table of shape (n,8),
concatenating position, velocity, time, broadcasted trajid.

Arguments

	selector: any 1d indexing expression known to numpy.

	
smoothed(smoothness=3.0)[source]

	Creates a trajectory generated from this trajectory using cubic
B-spline interpolation.

Arguments

	smoothness: strength of smoothing, larger is smoother. See
scipy.interpolate.splprep()‘s s parameter.

Returns

a new Trajectory object with the interpolated positions and
velocities. If the length of the trajectory < 4, returns self.

	
flowtracks.trajectory.mark_unique_rows(all_rows)[source]

	Filter out rows whose position columns represent a particle that already
appears, so that each particle position appears only once.

Arguments

	all_rows: an array with n rows and at least 3 columns for position.

Returns

an array with the indices of rows to take from the input such that in the
result, the first 3 columns form a unique combination.

	
flowtracks.trajectory.take_snapshot(trajects, frame, schema)[source]

	Goes over a list of trajectories and extracts the particle data at a given
time point. If the trajectory list is empty, creates an empty snapshot.

Arguments

	trajects: a list of :class:Trajectory objects to query.

	frame: the frame number to which snapshot data belongs.

	schema: a dict, {propname: shape tuple}, as given by the trajectory’s
schema(). This is only needed for consistency in
the case of an empty trajectory list resulting in an empty snapshot.

Returns

a ParticleSnapshot object with all the particles in the given frame.

	
flowtracks.trajectory.trajectories_in_frame(trajects, frame_num, start_times=None, end_times=None, segs=False)[source]

	Notes the indices of trajectories participating in the frame for later
extraction.

Arguments

	trajects: a list of :class:Trajectory objects to filter.

	frame_num: the time value (as found in trajectory.time()) at which the
trajectory should be active.

	start_times, end_times: each a len(trajects) array containing the
corresponding start/end frame number of each trajectory, respectively.

	segs: true if the trajectory should be active also in the following frame.

Returns

traj_nums = the indices of active trajectories in trajects.

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flowtracks 1.0 documentation

Input and Output Routines

The main entry points for using the module are the trajectories()
function (or its counterpart :func`iter_trajectories`) for reading the data
for a scene; and either save_trajectories() or
save_particles_table() for saving scene data in, respectively, an obsolete
format based on a directory of NPZ files, or in the newer, recommended, HDF5
format.

The trajectory reader, unless otherwise noted, will try to infer the format
from the file name (see infer_format()).

The rest of the content of this module is composed of readers and writers for
the various formats. They are documented here alongside the main entry points,
so that users may access them directly if needed.

	
flowtracks.io.infer_format(fname)[source]

	Try to guess the format of a particles data file by its name.

Arguments

	fname: the file name from which to guess the format.

Returns

A string marking the format. Currently one of ‘acc’, ‘mat’, ‘xuap’,
‘npz’, ‘hdf’ or ‘ptvis’.

	
flowtracks.io.iter_trajectories_ptvis(fname, first=None, last=None, frate=1.0, xuap=False, traj_min_len=None)[source]

	Extract all trajectories in a directory of ptv_is/xuap files, as
generated by programs in the 3d-ptv/pyptv family.

Arguments

	fname: a template file name representing all ptv_is/xuap files in the
directory, with exactly one ‘%d’ representing the frame number. If
no ‘%d’ is found, the input is assumed to be in the Ron Shnapp
format- single file of concatenated ptv_is files, each stripped of
the particle count line (first line) and separated from the next by
an empty line.

	first, last: inclusive range of frames to read, rel. filename numbering.

	frate: frame rate, used for calculating velocities by backward
derivative.

	xuap: The format is extended with colums for velocity and acceleration.

	traj_min_len: do not include trajectories shorter than this many frames.

Yields

each of the trajectories in the ptv_is data in order, as a
Trajectory instance with velocity and
acceleration.

	
flowtracks.io.load_trajectories(res_dir, first=None, last=None)[source]

	Load a series of trajectories and associated data from a directory
containing npz trajectory files, as created by save_trajectories().

Arguments

	res_dir: path to the directory holding the trajectory files.

Returns

	trajects: a list of Trajectory objects created from the files is res_dir

	per_traject_adds: a dictionary of named added date. Each value is a
dictionary keyed by trajid.

	
flowtracks.io.read_frame_data(conf_fname)[source]

	Read a configuration file in INI format, which specifies the locations
where particle positions and velocities should be read from, and directly
stores some scalar frame values, like particle densidy etc.

Arguments

	conf_fname: name of the config file

Returns

	particle: a Particle object holding particle properties.

	frate: the frame rate at which the scene was shot.

	frame, next_frame: Frame objects holding the tracers and particles data
for the time points indicated in config, and the one immediately
following it.

	
flowtracks.io.save_particles_table(filename, trajects, trim=None)[source]

	Save trajectory data as a table of particles, with added columns for time
(frame number) and trajid - the last one may be indexed. Note that no extra
(per-trajectory or meta) data is allowed here, unlike the npz save format.

Arguments

	filename: name of output PyTables HDF5 file to create. The ‘h5’ extension
is recommended so that infer_format() knows what to do with it.

	trajects: a list of Trajectory objects to save.

	trim: if None, remove this many time points from each end of each
trajectory before saving.

	
flowtracks.io.save_trajectories(output_dir, trajects, per_traject_adds, **kwds)[source]

	Save for each trajectory the data for this trajectory, as well as
additional data attached to each trajectory, such as trajectory
reconstructions. Creates in the output directory one npz file per
trajectory, containing the arrays of the trajectory as well as the added
arrays.

Arguments

	output_dir: name of the directory where output should be placed. Will be
created if it does not exist.

	trajects: a list of Trajectory objects.

	per_traject_adds: a dictionary, whose keys are the array names to use when
saving, and vaslues are trajid-keyed dictionaries with the actual
arrays to save for each trajectory.

	kwds: free arrays to save in the output dir

	
flowtracks.io.trajectories(fname, first, last, frate, fmt=None, traj_min_len=None, iter_allowed=False)[source]

	Extract all trajectories in a given target location. The location format
is interpreted based on the format of the data files, in the respective
trajectories_* functions.

Trajectories of one frame are filtered out.

Arguments

	fname: a template file name, as needed by the appropriate suboridinate
function.

	first, last: inclusive range of frames to read, rel. filename numbering.

	frate: frame rate under which the film was shot - needed for ptvis
trajectories.

	traj_min_len: on some formats, (currently ptv_is and xuap) it is possible
to filter trajectories with less frames than this, saving memory.

	iter_allowed: may return an iterator instead of a list.

Returns

a list (or iterator) of Trajectory objects.

	
flowtracks.io.trajectories_acc(fname, first=None, last=None)[source]

	Extract all trajectories in a directory of trajAcc files.

Arguments

	fname: a template file name representing all trajAcc files in the
directory, with exactly one ‘%d’ representing the frame number.

	first, last: inclusive range of frames to read, rel. filename numbering.

Returns

	trajects: a list of Trajectory objects,
one for each trajectory contained in the mat file.

	
flowtracks.io.trajectories_mat(fname)[source]

	Extracts all trajectories from a Matlab file. the file is formated as a
list of trajectory record arrays, containing attributes ‘xf’, ‘yf’, ‘zf’
for position, ‘uf’, ‘vf’, ‘wf’ for velocity, and ‘axf’, ‘ayf’, ‘azf’ for
acceleration.

Arguments

	fname: path to the Matlab file.

Returns

	trajects: a list of Trajectory objects,
one for each trajectory contained in the mat file.

	
flowtracks.io.trajectories_ptvis(fname, first=None, last=None, frate=1.0, xuap=False, traj_min_len=None)[source]

	Extract all trajectories in a directory of ptv_is files, as generated by
programs in the 3d-ptv/pyptv family. supports xuap files as well.

Arguments

	fname: a template file name representing all ptv_is/xuap files in the
directory, with exactly one ‘%d’ representing the frame number. If
no ‘%d’ is found, the input is assumed to be in the Ron format - single
file of concatenated ptv_is files, each stripped of the particle count
line (first line) and separated from the next by an empty line.

	first, last: inclusive range of frames to read, rel. filename numbering.

	frate: frame rate, used for calculating velocities by backward
derivative.

	xuap: The format is extended with colums for velocity and acceleration.

	traj_min_len: do not include trajectories shorter than this many frames.

Returns

each of the trajectories in the ptv_is/xuap data in order, as a
Trajectory instance with velocity and
acceleration.

	
flowtracks.io.trajectories_table(fname, first=None, last=None)[source]

	Reads trajectories from a PyTables HDF5 file, as saved by
save_particles_table().

Arguments

	fname: path to file to read.

	first, last: inclusive range of frames to read.

Returns

	trajects: a list of Trajectory objects, each trimmed to the frame range.

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flowtracks 1.0 documentation

Particle class reference

This class is needed for modeling the dynamics of a particle in a flow scene.

	
class flowtracks.particle.Particle(diameter, density)[source]

	A class to hold particle properties.

Arguments

	diameter: particle diameter, [m]

	density: particle density, [kg/m^3]

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flowtracks 1.0 documentation

Interpolation module reference

Interpolation routines.

References

	[1]	http://en.wikipedia.org/wiki/Inverse_distance_weighting

	[2]	Lüthi, Beat. Some Aspects of Strain, Vorticity and Material Element Dynamics as Measured with 3D Particle Tracking Velocimetry in a Turbulent Flow. PhD Thesis, ETH-Zürich (2002).

	[3]	http://en.wikipedia.org/wiki/Radial_basis_function

Documentation

	
class flowtracks.interpolation.Interpolant(method, num_neighbs=None, radius=None, param=None)[source]

	Holds all parameters necessary for performing an interpolation. Use is as
a callable object after initialization, see __call__().

Arguments

	method: interpolation method. Either ‘inv’ for inverse-distance
weighting, ‘rbf’ for gaussian-kernel Radial Basis Function
method, or ‘corrfun’ for using a correlation function.

	radius: of the search area for neighbours, [m]. If None, select
closest neighbs.

	neighbs: number of closest neighbours to interpolate from. If None.
uses 4 neighbours for ‘inv’ method, and 7 for ‘rbf’, unless
radius is not None, then neighbs is ignored.

	param: the parameter adjusting the interpolation method. For IDW it is
the inverse power (default 1), for rbf it is epsilon (default 1e5).

	
__call__(tracer_pos, interp_points, data)[source]

	Sets up the necessary parameters, and performs the interpolation.
Does not change the scene set by set_scene if any, so may be used
for any off-scene interpolation.

Arguments

	tracer_pos: (n,3) array, the x,y,z coordinates of one tracer per row,
in [m]

	interp_points: (m,3) array, coordinates of points where interpolation
will be done.

	data: (n,d) array, the for the d-dimensional data for tracer n. For
example, in velocity interpolation this would be (n,3), each tracer
having 3 components of velocity.

Returns

	vel_interp: an (m,3) array with the interpolated value at the position
of each particle, [m/s].

	
interpolate(subset=None)[source]

	Performs an interpolation over the recorded scene.

Arguments

	subset: a neighbours selection array, such as returned from
which_neighbours(), to replace the recorded selection. Default
value (None) uses the recorded selection. The recorded selection
is not changed, so subset is forgotten after the call.

Returns

an (m,3) array with the interpolated value at the position of each
of m particles.

	
neighb_dists(tracer_pos, interp_points)[source]

	The distance from each interpolation point to each data point of those
used for interpolation. Assumes, for now, a constant number of
neighbours.

Arguments

	tracer_pos: (n,3) array, the x,y,z coordinates of one tracer per row,
in [m]

	interp_points: (m,3) array, coordinates of points where interpolation
will be done.

Returns

	ndists: an (m,c) array, for c closest neighbours as defined during
object construction.

	
save_config(cfg)[source]

	Adds the keys necessary for recreating this interpolant into a
configuration object. It is the caller’s responsibility to do a
writeback to file.

Arguments

	cfg: a ConfigParser object.

	
set_scene(tracer_pos, interp_points, data)[source]

	Records scene data for future interpolation using the same scene.

Arguments

	tracer_pos: (n,3) array, the x,y,z coordinates of one tracer per row,
in [m]

	interp_points: (m,3) array, coordinates of points where interpolation
will be done.

	data: (n,d) array, the for the d-dimensional data for tracer n. For
example, in velocity interpolation this would be (n,3), each tracer
having 3 components of velocity.

	
trim_points(which)[source]

	Remove interpolation points from the scene.

Arguments

	which: a boolean array, length is number of current particle list
(as given in set_scene), True to trim a point, False to keep.

	
which_neighbours()[source]

	Finds the neighbours that would be selected for use at each
interpolation point, given the current scene as set by set_scene().

Returns

(m,n) boolean array, True where tracer \(j=1...n\) is a neighbour
of interpolation point \(i=1...m\) under the reigning selection
criteria.

	
flowtracks.interpolation.corrfun_interp(dists, use_parts, data, corrs_hist, corrs_bins)[source]

	For each of n particle, generate the velocity interpolated to its
position from all neighbours as selected by caller. The weighting of
neighbours is by the correlation function, e.g. if the distance at
neighbor i is \(r_i\), then it adds \(\rho(r_i)*v_i\) to the
interpolated velocity. This is done for each component separately.

Arguemnts

	dists: (m,n) array, the distance of interpolation_point \(i=1...m\)
from tracer \(j=1...n\), for (row,col) (i,j) [m]

	use_parts: (m,n) boolean array, whether tracer j is a neighbour of
particle i, same indexing as dists.

	data: (n,d) array, the d components of the data that is interpolated from,
for each of n tracers.

	corrs_hist: the correlation function histogram, an array of b bins.

	corrs_bins: same size array, the bin start point for each bin.

Returns

	vel_avg: an (m,3) array with the interpolated velocity at each
interpolation point, [units of data].

	
flowtracks.interpolation.inv_dist_interp(dists, use_parts, velocity, p=1)[source]

	For each of n particle, generate the velocity interpolated to its
position from all neighbours as selected by caller. Interpolation method is
inverse-distance weighting, [1]

Arguments

	dists: (m,n) array, the distance of interpolation_point i=1...m from
tracer j=1...n, for (row,col) (i,j) [m]

	use_parts: (m,n) boolean array, whether tracer j is a neighbour of
particle i, same indexing as dists.

	velocity: (n,3) array, the u,v,w velocity components for each of n
tracers, [m/s]

	p: the power of inverse distance weight, w = r^(-p). default 1. Use 0 for
simple averaging.

Returns

	vel_avg: an (m,3) array with the interpolated velocity at each
interpolation point, [m/s].

	
flowtracks.interpolation.rbf_interp(tracer_dists, dists, use_parts, data, epsilon=0.01)[source]

	Radial-basis interpolation [3] for each particle, from all neighbours
selected by caller. The difference from inv_dist_interp is that the
weights are independent of interpolation point, among other differences.

Arguments

	tracer_dists: (n,n) array, the distance of tracer \(i=1...n\) from
tracer \(j=1...n\), for (row,col) (i,j) [m]

	dists: (m,n) array, the distance from interpolation point
\(i=1...m\) to tracer j. [m]

	use_parts: (m,n) boolean array, True where tracer \(j=1...n\) is a
neighbour of interpolation point \(i=1...m\).

	data: (n,d) array, the d components of the data for each of n tracers.

Returns

	vel_interp: an (m,3) array with the interpolated velocity at the position
of each particle, [m/s].

	
flowtracks.interpolation.read_interpolant(conf_fname)[source]

	Builds an Interpolant object based on values in an INI-formatted file.

Arguments

	conf_fname: path to configuration file.

Returns

an Interpolant object constructed from values in the configuration file.

	
flowtracks.interpolation.select_neighbs(tracer_pos, interp_points, radius=None, num_neighbs=None)[source]

	For each of m interpolation points, find its distance to all tracers. Use
result to decide which tracers are the neighbours of each interpolation
point, based on either a fixed radius or the closest num_neighbs.

Arguments

	tracer_pos: (n,3) array, the x,y,z coordinates of one tracer per row, [m]

	interp_points: (m,3) array, coordinates of points where interpolation will
be done.

	radius: of the search area for neighbours, [m]. If None, select closest
num_neighbs.

	num_neighbs: number of closest neighbours to interpolate from. If None.
uses all neighbours in a given radius. radius has precedence.

Returns

	dists: (m,n) array, the distance from each interpolation point to each
tracer.

	use_parts: (m,n) boolean array, True where tracer \(j=1...n\) is a
neighbour of interpolation point \(i=1...m\).

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flowtracks 1.0 documentation

Reference for flowtracks.graphics

Various specialized graphing routines. The Probability Density Function
graphing is best accessed by calling pdf_graph() on the raw data, but
you can generate the PDF from the data separately (e.g. using
pdf_bins()) and calling generalized_histogram_disp() on the
result.

The other facility here is a function to plot a time-dependent 3D vector as
3 component subplots, which is another customary presentation in fluid
dynamics circles. See plot_vectors().

	
flowtracks.graphics.generalized_histogram_disp(hist, bin_edges, log_bins=False, log_density=False, marker='o')[source]

	Draws a given histogram according to the visual custom of the fluid
dynamics community.

Arguments

	hist: an array containing the number of values (or density) for each bin.

	bin_edges: the start value of each bin, same length as hist.

	log_bins: indicates that the bin edges are log-spaced.

	log_densify: Show the log of the probability density value. May cause
problems if log_bins is True.

	marker: marker style for matplotlib.

Returns

the list of lines drawn, Matplotlib objects.

	
flowtracks.graphics.pdf_bins(data, num_bins, log_bins=False)[source]

	Generate a PDF of the given data possibly with logarithmic bins, ready for
using in a histogram plot.

Arguments

	data: the samples to histogram.

	bins: the number of bins in the histogram.

	log_bins: if True, the bin edges are equally spaced on the log scale,
otherwise they are linearly spaced (a normal histogram). If True,
data should not contain zeros.

Returns

	hist: num_bins-lenght array of density values for each bin.

	bin_edges: array of size num_bins + 1 with the edges of the bins including
the ending limit of the bins.

	
flowtracks.graphics.pdf_graph(data, num_bins, log=False, log_density=False, marker='o')[source]

	Draw a PDF of the given data, according to the visual custom of
the fluid dynamics community, and possibly with logarithmic bins.

Arguments

	data: the samples to histogram.

	bins: the number of bins in the histogram.

	log: if True, the bin edges are equally spaced on the log scale, otherwise
they are linearly spaced (a normal histogram). If True, data should
not contain zeros.

	log_density: Show the log of the probability density value. Only if log
is False.

	marker: override the circle marker with any string acceptable to
matplotlib.

	
flowtracks.graphics.plot_vectors(vecs, indep, xlabel, fig=None, marker='-', ytick_dens=None, yticks_format=None, unit_str='')[source]

	Plot 3D vectors as 3 subplots sharing the same independent axis.

Arguments

	vecs: an (n,3) array, with n vectors to plot against the independent
variable.

	indep: the corresponding n values of the independent variable.

	xlabel: label for the independent axis.

	fig: an optional figure object to use. If None, one will be created.

	ytick_dens: if not None, place this many yticks on each subplot, instead
of the automatic tick marks.

	yticks_format: a pyplot formatter object.

	unit_str: a string to add to the Y labels representing the vector’s units.

Returns

	fig: the figure object used for plotting.

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flowtracks 1.0 documentation

Reference for the smoothing module

Trajectory smoothing routines. These are routines that are out of the
Trajectory object because they precompute values that are dependent only on the
smoothing method, and not on the trajectory itself, so they may be shared for
processing a whole list of trajectories.

	
flowtracks.smoothing.savitzky_golay(trajs, fps, window_size, order, deriv=0, rate=1)[source]

	Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
The Savitzky-Golay filter removes high frequency noise from data.
It has the advantage of preserving the original shape and
features of the signal better than other types of filtering
approaches, such as moving averages techniques.

Parameters

	trajs: a list of Trajectory objects

	window_size: int,
the length of the window. Must be an odd integer number.

	fps: frames per second, used for calculating velocity and acceleration.

	order: int,
the order of the polynomial used in the filtering.
Must be less then window_size - 1.

	deriv: int,
the order of the derivative to compute (default = 0 means only smoothing)

Returns

	new_trajs: a list of Trajectory objects representing the smoothed
trajectories. Trajectories shorter than the window size are discarded.

Notes

The Savitzky-Golay is a type of low-pass filter, particularly
suited for smoothing noisy data. The main idea behind this
approach is to make for each point a least-square fit with a
polynomial of high order over a odd-sized window centered at
the point.

References

	[1]	
	Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639.

	[2]	Numerical Recipes 3rd Edition: The Art of Scientific Computing W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery Cambridge University Press ISBN-13: 9780521880688

	[3]	http://wiki.scipy.org/Cookbook/SavitzkyGolay

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flowtracks 1.0 documentation

Reference for flowtracks.pairs

Pair particles to closest tracers.

	
flowtracks.pairs.particle_pairs(primary_trajects, secondary_trajects, trajids, time_points)[source]

	For each of a set of select particles in the primary trajectories, find
the closest particle in the secondary set.

Arguments

	primary_trajects: a list of Trajectory objects, some of which contain the
source points.

	secondary_trajects: a list of Trajectory objects, in which to look for the
pair points.

	trajid, time_points: each an n-length array for n pairs to produce,
holding correspondingly the trajectory id and index into the trajectory
of the points in the primary set to which a pair is sought.

Returns

	pair_trid, pair_time: coordinates of the found pairs, element i describes
the pair of particle i in (trajid, time_points). Format is the same as
that of trajid, time_points. For particles without a match,
returns -1 as the pair_time value.

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flowtracks 1.0 documentation

Scene and Dual Scene Manipulation

A module for manipulating PTV analyses saved as HDF5 files in the flowtracks
format. Allows reading the data by iterating over frames or over trajectories.

Main design goals:

	Keep as little as possible in memory.

	Minimize separate file accesses by allowing reading by frames instead of only by trajectories as in the old code.

	
class flowtracks.scene.DualScene(tracers_path, particles_path, frate, particle, frame_range=None)[source]

	Holds a scene orresponding to the dual-PTV systems, which shoot separate
but coordinated streams for the tracers data and inertial particles data.

Arguments

	tracers_path, particles_path: respectively the path to the tracers
and particles HDF files.

	frate: frame rate at which the scene was shot, [1/s].

	particle: a Particle object describing the inertial particles’
diameter and density.

	frame_range: a uniform frame range to set to both of them. The
default is None, meaning to use all frames (assuming
equal-length data streams)

	
get_particles()[source]

	Returns the Scene that manages inertial particles’ data.

	
get_particles_path()[source]

	Returns the path to the HDF file holding inertial particle data

	
get_range()[source]

	Returns the frame renge set for the dual scene.

	
iter_frames(frame_range=-1)[source]

	Iterates over a scene represented by two HDF files (one for inertial
particles, one for tracers), and returns a Frame object whose two
attributes (.tracers, .particles) hold a corresponding
ParticleSnapshot object.

Arguments

	frame_range: tuple (first, last) sets the frame range of both scenes
to an identical frame range. Argument format as in
Scene.set_frame_range(). Default is (-1) meaning to skip this.
Then the object’s initialization range is used, so initialize
to a coordinated range if you use the default.

Yields

the Frame object for each frame in turn.

	
iter_segments(frame_range=-1)[source]

	Like iter_frames, but returns two consecutive frames, both having the
same trajids set (in other words, both contain only particles from
the first frame whose trajectory continues to the next frame).

Arguments

	frame_range: tuple (first, last) sets the frame range of both scenes
to an identical frame range. Argument format as in
Scene.set_frame_range(). Default is (-1) meaning to skip this.
Then the object’s initialization range is used, so initialize
to a coordinated range if you use the default.

Yields

two Frame objects, representing the consecutive selective frames.

	
class flowtracks.scene.Scene(file_name, frame_range=None)[source]

	This class is the programmer’s interface to an HDF files containing
particle trajectory data. It manages access by frames or trajectories,
as well as by segments.

Arguments

	file_name: path to the HDF file hilding the data.

	frame_range: use only frames in this range for iterating the data.
the default is None, meaning to use all present frams.

	
iter_frames()[source]

	Iterator over frames. Generates a ParticleSnapshot object for each
frame, in the file, ordered by frame number, and yields it.

	
iter_segments()[source]

	Iterates over frames, taking out only the particles whose trajectory
continues in the next frame.

Yields

	frame: a ParticleSnapshot object representing the current frame with
the particles that have continuing trajectories.

	next_frame: same object, for the same particles in the next frame
(the time attribute is obviously +1 from frame).

	
iter_trajectories()[source]

	Iterator over trajectories. Generates a Trajectory object for each
trajectory in the file (in no particular order, but the same order
every time on the same PyTables version) and yields it.

	
keys()[source]

	Return all the possible trajectory properties that may be queried as
a data series (i.e. not the scalar property trajid), as a list of
strings.

	
set_frame_range(frame_range)[source]

	Prepare a query part that limits the frame numbers is needed.

Arguments

	frame_range: a tuple (first, last) frame number, with the usual
pythonic convention that first <= i < last. Any element may be
None, in which case no limit is generated for it, and for no limits
at all, passing none instead of a tuple is acceptable.

	
shapes()[source]

	Return the number of components per item of each key in the order
returned by keys().

	
flowtracks.scene.read_dual_scene(conf_fname)[source]

	Read dual-scene parameters, such as unchanging particle properties and
frame range. Values are stored in an INI-format file.

Arguments

	conf_fname: name of the config file

Returns

a DualScene object initialized with the configuration values found.

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flowtracks 1.0 documentation

The Basic Analysis Machinery

Infrastructure for running a frame-by-frame analysis on a DualScene object.
The main point of interest here is analysis(), which performs a segment
iteration over a DualScene and applies to each
a user-selected list of analyzers. Analysers are instances of a
GeneralAnalyser subclass which implements the necessary methods,
as described in the base class documentation.

There is one base class supplied here, FluidVelocitiesAnalyser,
which ties in the flowtracks.interpolation module for analysing the
fluid velocity around a particle from its surrounding tracers.

	
class flowtracks.analysis.FluidVelocitiesAnalyser(interp)[source]

	Finds, for each particle in the particles set of a frame, the
so-called undisturbed fluid velocity at the particle’s position, by
interpolating from nearby particles in the tracers set.

Arguments

	interp: the Interpolant object to use for finding velocities.

	
analyse(frame, next_frame)[source]

	Arguments

	frame, next_frame: the Frame object for the currently-analysed frame
and the one after it, respectively.

Returns

a list of two arrays, each of shape (f,3) where f is the number of
particles in the current frame. 1st array - fluid velocity. 2nd array
- relative velocity.

	
descr()[source]

	Return a list of two tuples, each of the form
(name, data type, row length), describing the arrays returned by
analyse() for fluid velocity and relative velocity.

	
class flowtracks.analysis.GeneralAnalyser[source]

	This is the parent class for all analysers to be used by analysis().
It does not do anything but define and document the methods that must be
implenmented by the child class (in other words, this class is abstract).
Attempting to use its methods will result in a NotImplementedError.

	
analyse(frame, next_frame)[source]

	Arguments

	frame, next_frame: the Frame object for the currently-analysed frame
and the one after it, respectively.

Returns

a list of arrays, each of shape (f,d) where f is the number of
particles in the current frame, and d is the row length of the
corresponding item returned by self.descr(). Each array’s dtype also
corresponds to the dtype given to it by self.descr().

	
descr()[source]

	Need to return a list of tuples, each of the form
(name, data type, row length), e.g. (‘trajid’, int, 1)

	
flowtracks.analysis.analysis(scene, analysis_file, conf_file, analysers, frame_range=-1)[source]

	Generate the analysis table for a given scene with separate data for
inertial particles and tracers.

Arguments

	scene: a DualScene object representing an experiment with coordinated
particles and tracers data streams.

	analysis_file: path to the file where analysis should be saved. If the
file exists, it will be cloberred.

	conf_file: name of config file used for creating the analysis.

	analysers: a list of GeneralAnalyser subclasses that do the actual
analysis work and know all that is needed about output shape.

	frame_range: if -1 no adjustment is necessary, otherwise see
DualScene.iter_segments()

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flowtracks 1.0 documentation

Handling of Analysis Results

	
class flowtracks.an_scene.AnalysedScene(analysis_file)[source]

	A class for accessing data and analyses of a scene analysed and saved in
the format used by flowtracks.analysis.analyse().

Initializes the objects according to config and data-source metadata
saved in the analysis file.

Arguments

	analysis_file: path to the HDF file containing analysis results.

	
collect(keys, where=None)[source]

	Get values of a given key, either some of them or the ones
corresponding to a selection given by ‘where’

Arguments

	keys: a list of keys to take from the data

	where: a dictionary of derived-results keys, with a tuple
(min,max,invert) as values. If invert is false, the search
range is between min and max. Otherwise it is anywhere except that.

Returns

a list of arrays, in the order of keys.

	
keys()[source]

	Return names that may be used to access data in any of the data sources
available, whether analyses or inertial particles.

	
shapes()[source]

	Return the number of components per item of each key in the order
returned by keys().

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Flowtracks 1.0 documentation

Sequence Processing of non-HDF Formatted Particle Databases

	
class flowtracks.sequence.Sequence(frange, frate, particle, part_tmpl, tracer_tmpl, smooth_tracers=False, traj_min_len=0.0)[source]

	Tracks a dual particles database (for both inertial particles and
tracers), allowing a number of underlying formats. Provides segment
iteration and trajectory-mapping.

Arguments

	frange: tuple, (first frame #, after last frame #)

	frate: the frame rate at which the scene was shot.

	particle: a Particle object representing the suspended particles’
properties.

	part_tmpl, tracer_tmpl: the filenames for particle- and tracer-
databases respectively. Names must be as understood by
:func:`flowtracks.io.trajectories’.

	smooth_tracers: if True, uses trajectory smoothing on the tracer
trajectories when iterating over frames. Possibly out of date.

	traj_min_len: when reading trajectories (tracers and particles)
discard trajectories shorter than this many frames.

	
__iter__()[source]

	Iterate over frames. For each frame return the data for the tracers and
particles in it, as a tuple containing two
ParticleSnapshot objects
corresponding to the current frame data and the next frame’s.

Returns

A Python iteraor.

	
iter_subrange(first, last)[source]

	The same as __iter__(), except it changes the frame range for
the duration of the iteration.

Arguments

	first, last: frame numbers of the first and last frames in the
acting range of frames from the sequence.

Returns

A Python iteraor.

	
map_trajectories(func, subrange=None, history=False, args=())[source]

	Iterate over frames, for each frame call a function that generates a
per-trajectory result and add the results up in a per-trajectory
time-series.

Arguments

	func: the function to call. Returns a dictionary keyed by trajid.
receives as arguments (self, particles, tracers) where particles,
tracers are the sequence iteration results as given by __iter__.

	subrange: tuple (first, last). Iterate over a subrange of the sequence
delimited by these frame numbers.

	history: true if the result of one frame depends on earlier results.
If true, func receives a 4th argument, the accumulated results so
far as a dictionary of time-series lists.

	args: a tuple of extra positional arguments to pass to the function
after the usual arguments and the possible history argument.

Returns

a dictionary keyed by trajid, where for each trajectory a time series
of results obtained during the trajectory’s lifetime is the value.

	
part_fname()[source]

	Returns the file name used for reading inertial particles database.

	
part_format()[source]

	Returns the format inferred for the inertial particles database.

	
particle_trajectories()[source]

	Return (and possibly generate and cache) the list of
Trajectory objects as selected by
the particle selector.

	
range()[source]

	Returns the frame number range set for the object, as a tuple (first,
last).

	
save_config(cfg)[source]

	Adds the keys necessary for recreating this sequence into a
configuration object. It is the caller’s responsibility to do a
writeback to file.

Arguments

	cfg: a ConfigParser object.

	
set_particle_selector(selector)[source]

	Sets a filter on the particle trajectories used in sequencing.

Arguments

	selector: a function which receives a list of
Trajectory objects and returns
a sublist thereof.

	
set_tracer_selector(selector)[source]

	Sets a filter on the tracer trajectories used in sequencing.

Arguments

	selector: a function which receives a list of
Trajectory objects and returns
a sublist thereof.

	
subrange()[source]

	Returns the earliest and latest time points covered by the subset of
trajectories that the particle selector selects, bounded by the range
restricting the overall sequence.

	
tracer_trajectories()[source]

	Return (and possibly generate and cache) the list of
Trajectory objects corresponding to
tracers.

	
flowtracks.sequence.read_sequence(conf_fname, smooth=None, traj_min_len=None)[source]

	Read sequence-wide parameters, such as unchanging particle properties and
frame range. Values are stored in an INI-format file.

Arguments

	conf_fname: name of the config file

	smooth: whether the sequence shoud use tracers trajectory-smoothing. Used
to override the config value if present, and supply it if missing. If
None and missing, default is False.

	traj_min_len: tells the sequence to ignore trajectories shorter than this
many frames. Overrides file. If None and file has no value, default is
0.

Returns

a Sequence object initialized with the configuration values found.

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Flowtracks 1.0 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 flowtracks	

 	
 	
 flowtracks.an_scene	

 	
 	
 flowtracks.analysis	

 	
 	
 flowtracks.graphics	

 	
 	
 flowtracks.interpolation	

 	
 	
 flowtracks.io	

 	
 	
 flowtracks.pairs	

 	
 	
 flowtracks.particle	

 	
 	
 flowtracks.scene	

 	
 	
 flowtracks.sequence	

 	
 	
 flowtracks.smoothing	

 	
 	
 flowtracks.trajectory	

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Flowtracks 1.0 documentation

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | W

_

 	

 	__call__() (flowtracks.interpolation.Interpolant method)

 	__getitem__() (flowtracks.trajectory.Trajectory method)

 	

 	__iter__() (flowtracks.sequence.Sequence method)

 	__len__() (flowtracks.trajectory.ParticleSet method)

A

 	

 	analyse() (flowtracks.analysis.FluidVelocitiesAnalyser method)

 	

 	(flowtracks.analysis.GeneralAnalyser method)

 	AnalysedScene (class in flowtracks.an_scene)

 	

 	analysis() (in module flowtracks.analysis)

 	as_dict() (flowtracks.trajectory.ParticleSet method)

C

 	

 	collect() (flowtracks.an_scene.AnalysedScene method)

 	corrfun_interp() (in module flowtracks.interpolation)

 	

 	create_property() (flowtracks.trajectory.ParticleSet method)

D

 	

 	descr() (flowtracks.analysis.FluidVelocitiesAnalyser method)

 	

 	(flowtracks.analysis.GeneralAnalyser method)

 	

 	DualScene (class in flowtracks.scene)

E

 	

 	ext_schema() (flowtracks.trajectory.ParticleSet method)

F

 	

 	flowtracks.an_scene (module)

 	flowtracks.analysis (module)

 	flowtracks.graphics (module)

 	flowtracks.interpolation (module)

 	flowtracks.io (module)

 	flowtracks.pairs (module)

 	flowtracks.particle (module)

 	

 	flowtracks.scene (module)

 	flowtracks.sequence (module)

 	flowtracks.smoothing (module)

 	flowtracks.trajectory (module)

 	FluidVelocitiesAnalyser (class in flowtracks.analysis)

 	Frame (class in flowtracks.trajectory)

G

 	

 	GeneralAnalyser (class in flowtracks.analysis)

 	generalized_histogram_disp() (in module flowtracks.graphics)

 	get_particles() (flowtracks.scene.DualScene method)

 	

 	get_particles_path() (flowtracks.scene.DualScene method)

 	get_range() (flowtracks.scene.DualScene method)

H

 	

 	has_property() (flowtracks.trajectory.ParticleSet method)

I

 	

 	infer_format() (in module flowtracks.io)

 	Interpolant (class in flowtracks.interpolation)

 	interpolate() (flowtracks.interpolation.Interpolant method)

 	inv_dist_interp() (in module flowtracks.interpolation)

 	iter_frames() (flowtracks.scene.DualScene method)

 	

 	(flowtracks.scene.Scene method)

 	

 	iter_segments() (flowtracks.scene.DualScene method)

 	

 	(flowtracks.scene.Scene method)

 	iter_subrange() (flowtracks.sequence.Sequence method)

 	iter_trajectories() (flowtracks.scene.Scene method)

 	iter_trajectories_ptvis() (in module flowtracks.io)

K

 	

 	keys() (flowtracks.an_scene.AnalysedScene method)

 	

 	(flowtracks.scene.Scene method)

L

 	

 	load_trajectories() (in module flowtracks.io)

M

 	

 	map_trajectories() (flowtracks.sequence.Sequence method)

 	

 	mark_unique_rows() (in module flowtracks.trajectory)

N

 	

 	neighb_dists() (flowtracks.interpolation.Interpolant method)

P

 	

 	part_fname() (flowtracks.sequence.Sequence method)

 	part_format() (flowtracks.sequence.Sequence method)

 	Particle (class in flowtracks.particle)

 	particle_pairs() (in module flowtracks.pairs)

 	particle_trajectories() (flowtracks.sequence.Sequence method)

 	

 	ParticleSet (class in flowtracks.trajectory)

 	ParticleSnapshot (class in flowtracks.trajectory)

 	pdf_bins() (in module flowtracks.graphics)

 	pdf_graph() (in module flowtracks.graphics)

 	plot_vectors() (in module flowtracks.graphics)

R

 	

 	range() (flowtracks.sequence.Sequence method)

 	rbf_interp() (in module flowtracks.interpolation)

 	read_dual_scene() (in module flowtracks.scene)

 	

 	read_frame_data() (in module flowtracks.io)

 	read_interpolant() (in module flowtracks.interpolation)

 	read_sequence() (in module flowtracks.sequence)

S

 	

 	save_config() (flowtracks.interpolation.Interpolant method)

 	

 	(flowtracks.sequence.Sequence method)

 	save_particles_table() (in module flowtracks.io)

 	save_trajectories() (in module flowtracks.io)

 	savitzky_golay() (in module flowtracks.smoothing)

 	Scene (class in flowtracks.scene)

 	schema() (flowtracks.trajectory.ParticleSet method)

 	select_neighbs() (in module flowtracks.interpolation)

 	Sequence (class in flowtracks.sequence)

 	

 	set_frame_range() (flowtracks.scene.Scene method)

 	set_particle_selector() (flowtracks.sequence.Sequence method)

 	set_scene() (flowtracks.interpolation.Interpolant method)

 	set_tracer_selector() (flowtracks.sequence.Sequence method)

 	shapes() (flowtracks.an_scene.AnalysedScene method)

 	

 	(flowtracks.scene.Scene method)

 	smoothed() (flowtracks.trajectory.Trajectory method)

 	subrange() (flowtracks.sequence.Sequence method)

T

 	

 	take_snapshot() (in module flowtracks.trajectory)

 	tracer_trajectories() (flowtracks.sequence.Sequence method)

 	trajectories() (in module flowtracks.io)

 	trajectories_acc() (in module flowtracks.io)

 	trajectories_in_frame() (in module flowtracks.trajectory)

 	

 	trajectories_mat() (in module flowtracks.io)

 	trajectories_ptvis() (in module flowtracks.io)

 	trajectories_table() (in module flowtracks.io)

 	Trajectory (class in flowtracks.trajectory)

 	trim_points() (flowtracks.interpolation.Interpolant method)

W

 	

 	which_neighbours() (flowtracks.interpolation.Interpolant method)

 Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

 _static/down.png

_downloads/hdf5_scene_analysis.html

This tutorial goes through the steps of taking a dual scene (that is, a scene containing synchronous measurements of tracers and inertial particles in the same volume) and exploring and analysing the data.

We start with just the inertial particles. Our example data is stored in the postptv repository, in the data/ subdirectory. We open it like so:

In [3]:

from flowtracks.scene import Scene
particles = Scene('../data/particles.h5')

The Scene object allows us to iterate over the data, either trajectory by trajectory, or frame by frame. As an example of trajectory iteration, let's display a 2D view of the existing trajectories.

In [9]:

import matplotlib.pyplot as pl # Plotting package
Show results in the notebook:
%matplotlib inline

for traj in particles.iter_trajectories():
 # traj is a Trajectory object, supplied by the
 # flowtracks.trajectory module.
 pl.plot(traj.pos()[:,0], traj.pos()[:,1], '.')

pl.show()

[image:]0020

0015

0010

0005

0000

~0.005

-0.010

0015

-0

029
28,620 0,015 —0.010 -0.005 0000 0005 0010 0015

0020

This was easy. However, for large data sets this may be slow. I found that for most analyses it is better to iterate by frames, because we have far less frames than trajectories, and so the chunks that are being processed at each iteration are larger. Additionally, a lot of things you want to know require knowledge about the frame in which the particle is, and not just about the trajectory.

As an example, we'll find a nicely spaced frame, and show a quiver plot of particle positions and velocities.

In [15]:

for frame in particles.iter_frames():
 # frame is a ParticleSnapshot object, supplied by the
 # flowtracks.trajectory module.
 if len(frame) == 40:
 pl.quiver(frame.pos()[:,0], frame.pos()[:,1],
 frame.velocity()[:,0], frame.velocity()[:,1])
 break
pl.show()

[image:]o \
oot

oosf = N
\

0000 T Y, t

~0.005 7

-0.010 »

0015 -

-0.029
28020 0015 0010 0005 0000 0005 0010 0015

As you can see, our observation volume is about 3x3 centimeters, and there seems to be more going on on the upper side than the lower one - in this frame. We don't know what will happen in the next - this is turbulence!

Finally, a concept we will explore in the next section, is iteration over segments - pairs of consecutive frames, each containing only the trajectories that are also found in the other.

A dual scene¶

Now to analyse a dual scene. This is not much different. However, the scene requires, in addition to the data sources on particles and tracers, some more description: the particle properties and the common flow rate are required. So one way to create a dual scene, like the one we have in the data/ directory, is to provide it straight:

In [16]:

from flowtracks.scene import DualScene
from flowtracks.particle import Particle

part = Particle(500e-6, 1450) # diameter [m], density [kg/m^3]
scene = DualScene('../data/particles.h5', '../data/tracers.h5', frate=500, particle=part)
It is also possible to set a frame range other than all frames, see the docstring.

However, it is easier to use a configuration file containing all the data. Such a file is available in the data directory as an example:

In [24]:

cat ../data/seq_hdf.cfg

[Particle]

density = 1450

diameter = 500e-6

[Scene]

particles file = particles.h5

tracers file = tracers.h5

first frame = 10001

last frame = 10200

frame rate = 500

Note that the file refers to relative paths, so we'll first switch to the data directory. In your code, you should probably use absolute paths.

In [25]:

%cd ../data
from flowtracks.scene import read_dual_scene
scene = read_dual_scene('../data/seq_hdf.cfg')

/home/yosef/postptv/data

Now we can do calculations that relate both the tracers and the particles. Here, for example, we'll find the fluid velocity around each particle by interpolation from tracers. Like in the above example, Iteration is used to find an arbitrary frame according to some condition (here the number of particles is checked, just because it gives a nice plot). Then the fluid velocity is calculated and the quiver plot is painted so that the least tracer-like inertial particle is red, and the most tracer-like is blue. [note however that the scaling is misleading, the blue particles are not necessarily very good tracers]

In [42]:

from numpy.linalg import norm
from flowtracks.interpolation import Interpolant
interp = Interpolant('inv', 4, 1) # Inverse Distance weighting, 1/r, 4 neighbours.

for frame, next_frame in scene.iter_segments():
 # We don't actually use ``next_frame`` here.
 if len(frame.particles) == 40:
 vel_interp = interp(frame.tracers.pos(), frame.particles.pos(),
 frame.tracers.velocity())
 rel_vel = frame.particles.velocity() - vel_interp

 # Color by relative slip velocity
 c = norm(rel_vel, axis=1)
 c /= max(c)

 pos = frame.particles.pos()
 vel = frame.particles.velocity()
 pl.quiver(pos[:,0], pos[:,1], vel[:,0], vel[:,1], c)
 break
pl.show()

[image:]T
[

~0.005 L

-0.010

0015 -

-0.029
28020 0015 0010 0005 0000 0005 0010 0015

Analysis machinery¶

A loop such as the one above can be a recurring theme in our analysis code. Furthermore, we would like to read the file only once, and lump all analyses together. For this reason, the module flowtrack.analysis exists. It provides the analysis() function, which iterates over segments, applying user-supplied analysers. An analyser is a class that describes how an analysis is to be made, and what results are to be expected from it. Here, for example, is an analyser implementing the interpolation we have seen above, for a user-defined interpolant:

In [46]:

from flowtracks.analysis import GeneralAnalyser

class FluidVelocitiesAnalyser(GeneralAnalyser):
 def __init__(self, interp):
 """
 Arguments:
 interp - the Interpolant object to use for finding velocities.
 """
 self._interp = interp

 def descr(self):
 """
 Return a list of two tuples, each of the form
 (name, data type, row length), describing the arrays returned by
 analyse() for fluid velocity and relative velocity.
 """
 return [('fluid_vel', float, 3), ('rel_vel', float, 3)]

 def analyse(self, frame, next_frame):
 """
 Arguments:
 frame, next_frame - the Frame object for the currently-analysed frame
 and the one after it, respectively.

 Returns:
 a list of two arrays, each of shape (f,3) where f is the number of
 particles in the current frame. 1st array - fluid velocity. 2nd array
 - relative velocity.
 """
 vel_interp = self._interp(frame.tracers.pos(), frame.particles.pos(),
 frame.tracers.velocity())
 rel_vel = frame.particles.velocity() - vel_interp

 return [vel_interp, rel_vel]

Note the return values of analyse() are described by descr(). You can find this class too in flowtracks.analysis. An example of how to use it can be found in scripts/analyse_fhdf.py. We'll run the same example with our own values:

In [54]:

from flowtracks.analysis import analysis
analysis(scene, 'results_an.h5', 'seq_hdf.cfg', [FluidVelocitiesAnalyser(interp)])

This created a file called 'results_an.h5' in our working directory. It is another HDF file with the analysis results. Now we need to load this analysis in order to look at the results. After loading, any result column can be pulled out in full or partially. We can use this to plot a PDF of the relative velocity.

In [65]:

from flowtracks.an_scene import AnalysedScene
an_res = AnalysedScene('results_an.h5')
rel_vel = norm(an_res.collect(['rel_vel'])[0], axis=1)
print rel_vel

from flowtracks.graphics import pdf_graph
pdf_graph(rel_vel, 100)

[0.08909729 0.06412617 0.0348499 ..., 0.06492881 0.19591666
 0.07150005]

[image:]010 015 020 025 030 035 040

005

[-] Ausuap Aaqegoid

Note that we pulled out the 'rel_vel' analysis column, but we could just as easily pull out one of the trajectory columns, the AnalysedScene transparently knows where to look for the column you asked for.

And that's pretty much all there is to it. Except there is more. Check out the docstrings in the code, or ask on the openptv googlegroup for more information on what can be done.

_modules/flowtracks/smoothing.html

 Navigation

 		
 index

 		
 modules |

 		Flowtracks 1.0 documentation »

 		Module code »

 Source code for flowtracks.smoothing

-*- coding: utf-8 -*-
#Created on Thu Nov 14 11:41:53 2013

"""
Trajectory smoothing routines. These are routines that are out of the
Trajectory object because they precompute values that are dependent only on the
smoothing method, and not on the trajectory itself, so they may be shared for
processing a whole list of trajectories.
"""

from flowtracks.trajectory import Trajectory
import numpy as np

[docs]def savitzky_golay(trajs, fps, window_size, order, deriv=0, rate=1):
 """
 Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
 The Savitzky-Golay filter removes high frequency noise from data.
 It has the advantage of preserving the original shape and
 features of the signal better than other types of filtering
 approaches, such as moving averages techniques.

 Parameters:
 trajs - a list of Trajectory objects
 window_size - int,
 the length of the window. Must be an odd integer number.
 fps - frames per second, used for calculating velocity and acceleration.
 order - int,
 the order of the polynomial used in the filtering.
 Must be less then `window_size` - 1.
 deriv - int,
 the order of the derivative to compute (default = 0 means only smoothing)

 Returns:
 new_trajs - a list of Trajectory objects representing the smoothed
 trajectories. Trajectories shorter than the window size are discarded.

 Notes:
 The Savitzky-Golay is a type of low-pass filter, particularly
 suited for smoothing noisy data. The main idea behind this
 approach is to make for each point a least-square fit with a
 polynomial of high order over a odd-sized window centered at
 the point.

 References:

 .. [#] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of \
 Data by Simplified Least Squares Procedures. Analytical \
 Chemistry, 1964, 36 (8), pp 1627-1639.

 .. [#] Numerical Recipes 3rd Edition: The Art of Scientific Computing \
 W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery \
 Cambridge University Press ISBN-13: 9780521880688

 .. [#] http://wiki.scipy.org/Cookbook/SavitzkyGolay
 """
 from math import factorial

 try:
 window_size = np.abs(np.int(window_size))
 order = np.abs(np.int(order))
 except ValueError:
 raise ValueError("window_size and order have to be of type int")
 if window_size % 2 != 1 or window_size < 1:
 raise TypeError("window_size size must be a positive odd number")
 if window_size < order + 2:
 raise TypeError("window_size is too small for the polynomials order")
 order_range = range(order+1)
 half_window = (window_size -1) // 2

 # precompute coefficients
 b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
 m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)

 new_trajs = []
 for traj in trajs:
 if len(traj) < window_size:
 continue

 newpos = []
 for y in traj.pos().T:
 # pad the signal at the extremes with
 # values taken from the signal itself
 firstvals = y[0] - np.abs(y[1:half_window+1][::-1] - y[0])
 lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
 y = np.concatenate((firstvals, y, lastvals))
 newpos.append(np.convolve(m[::-1], y, mode='valid'))

 newpos = np.r_[newpos].T
 newvel = np.vstack((np.diff(newpos, axis=0)*fps, np.zeros((1,3))))
 newacc = np.vstack((np.diff(newvel[:-1], axis=0)*fps, np.zeros((2,3))))

 new_trajs.append(Trajectory(newpos, newvel, traj.time(), traj.trajid(),
 accel=newacc))

 return new_trajs

 © Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

_modules/flowtracks/interpolation.html

 Navigation

 		
 index

 		
 modules |

 		Flowtracks 1.0 documentation »

 		Module code »

 Source code for flowtracks.interpolation

-*- coding: utf-8 -*-
#Created on Tue May 28 10:27:15 2013

"""
Interpolation routines.

.. rubric:: References

.. [#IDW] http://en.wikipedia.org/wiki/Inverse_distance_weighting

.. [#BL] Lüthi, Beat. Some Aspects of Strain, Vorticity and Material Element \
 Dynamics as Measured with 3D Particle Tracking Velocimetry in a \
 Turbulent Flow. PhD Thesis, ETH-Zürich (2002).

.. [#RBF] http://en.wikipedia.org/wiki/Radial_basis_function

.. rubric:: Documentation
"""

import numpy as np, warnings
from ConfigParser import SafeConfigParser

[docs]def select_neighbs(tracer_pos, interp_points, radius=None, num_neighbs=None):
 """
 For each of m interpolation points, find its distance to all tracers. Use
 result to decide which tracers are the neighbours of each interpolation
 point, based on either a fixed radius or the closest num_neighbs.

 Arguments:
 tracer_pos - (n,3) array, the x,y,z coordinates of one tracer per row, [m]
 interp_points - (m,3) array, coordinates of points where interpolation will
 be done.
 radius - of the search area for neighbours, [m]. If None, select closest
 num_neighbs.
 num_neighbs - number of closest neighbours to interpolate from. If None.
 uses all neighbours in a given radius. ``radius`` has precedence.

 Returns:
 dists - (m,n) array, the distance from each interpolation point to each
 tracer.
 use_parts - (m,n) boolean array, True where tracer :math:`j=1...n` is a
 neighbour of interpolation point :math:`i=1...m`.
 """
 dists = np.linalg.norm(tracer_pos[None,:,:] - interp_points[:,None,:],
 axis=2)

 dists[dists <= 0] = np.inf # Only for selection phase,later changed back.

 if radius is None:
 if num_neighbs is None:
 raise ValueError("Either radius or num_neighbs must be given.")

 dist_sort = np.argsort(dists, axis=1)
 use_parts = np.zeros(dists.shape, dtype=np.bool)

 eff_num_neighbs = min(num_neighbs, tracer_pos.shape[0])
 use_parts[
 np.repeat(np.arange(interp_points.shape[0]), eff_num_neighbs),
 dist_sort[:,:num_neighbs].flatten()] = True

 else:
 use_parts = dists < radius

 dists[np.isinf(dists)] = 0.
 return dists, use_parts

[docs]def inv_dist_interp(dists, use_parts, velocity, p=1):
 """
 For each of n particle, generate the velocity interpolated to its
 position from all neighbours as selected by caller. Interpolation method is
 inverse-distance weighting, [#IDW]_

 Arguments:
 dists - (m,n) array, the distance of interpolation_point i=1...m from
 tracer j=1...n, for (row,col) (i,j) [m]
 use_parts - (m,n) boolean array, whether tracer j is a neighbour of
 particle i, same indexing as ``dists``.
 velocity - (n,3) array, the u,v,w velocity components for each of n
 tracers, [m/s]
 p - the power of inverse distance weight, w = r^(-p). default 1. Use 0 for
 simple averaging.

 Returns:
 vel_avg - an (m,3) array with the interpolated velocity at each
 interpolation point, [m/s].
 """
 weights = np.zeros_like(dists)
 weights[use_parts] = 1./dists[use_parts]**p

 vel_avg = (weights[...,None] * velocity[None,...]).sum(axis=1) / \
 weights.sum(axis=1)[:,None]

 return vel_avg

[docs]def corrfun_interp(dists, use_parts, data, corrs_hist, corrs_bins):
 """
 For each of n particle, generate the velocity interpolated to its
 position from all neighbours as selected by caller. The weighting of
 neighbours is by the correlation function, e.g. if the distance at
 neighbor i is :math:`r_i`, then it adds :math:`\\rho(r_i)*v_i` to the
 interpolated velocity. This is done for each component separately.

 Arguemnts:
 dists - (m,n) array, the distance of interpolation_point :math:`i=1...m`
 from tracer :math:`j=1...n`, for (row,col) (i,j) [m]
 use_parts - (m,n) boolean array, whether tracer j is a neighbour of
 particle i, same indexing as ``dists``.
 data - (n,d) array, the d components of the data that is interpolated from,
 for each of n tracers.
 corrs_hist - the correlation function histogram, an array of b bins.
 corrs_bins - same size array, the bin start point for each bin.

 Returns:
 vel_avg - an (m,3) array with the interpolated velocity at each
 interpolation point, [units of ``data``].
 """
 weights = np.zeros(dists.shape + (data.shape[-1],))
 weights[use_parts] = corrs_hist[
 np.digitize(dists[use_parts].flatten(), corrs_bins) - 1]

 vel_avg = (weights * data[None,...]).sum(axis=1) / \
 weights.sum(axis=1)

 return vel_avg

[docs]def rbf_interp(tracer_dists, dists, use_parts, data, epsilon=1e-2):
 """
 Radial-basis interpolation [3] for each particle, from all neighbours
 selected by caller. The difference from inv_dist_interp is that the
 weights are independent of interpolation point, among other differences.

 Arguments:
 tracer_dists - (n,n) array, the distance of tracer :math:`i=1...n` from
 tracer :math:`j=1...n`, for (row,col) (i,j) [m]
 dists - (m,n) array, the distance from interpolation point
 :math:`i=1...m` to tracer j. [m]
 use_parts - (m,n) boolean array, True where tracer :math:`j=1...n` is a
 neighbour of interpolation point :math:`i=1...m`.
 data - (n,d) array, the d components of the data for each of n tracers.

 Returns:
 vel_interp - an (m,3) array with the interpolated velocity at the position
 of each particle, [m/s].
 """
 kernel = np.exp(-tracer_dists**2 * epsilon)

 # Determine the set of coefficients for each particle:
 coeffs = np.zeros(dists.shape + (data.shape[-1],))
 for pix in xrange(dists.shape[0]):
 neighbs = np.nonzero(use_parts[pix])[0]
 K = kernel[np.ix_(neighbs, neighbs)]

 coeffs[pix, neighbs] = np.linalg.solve(K, data[neighbs])

 rbf = np.exp(-dists**2 * epsilon)
 vel_interp = np.sum(rbf[...,None] * coeffs, axis=1)
 return vel_interp

[docs]class Interpolant(object):
 """
 Holds all parameters necessary for performing an interpolation. Use is as
 a callable object after initialization, see :meth:`__call__`.
 """
 def __init__(self, method, num_neighbs=None, radius=None, param=None):
 """
 Arguments:
 method - interpolation method. Either 'inv' for inverse-distance
 weighting, 'rbf' for gaussian-kernel Radial Basis Function
 method, or 'corrfun' for using a correlation function.
 radius - of the search area for neighbours, [m]. If None, select
 closest ``neighbs``.
 neighbs - number of closest neighbours to interpolate from. If None.
 uses 4 neighbours for 'inv' method, and 7 for 'rbf', unless
 ``radius`` is not None, then ``neighbs`` is ignored.
 param - the parameter adjusting the interpolation method. For IDW it is
 the inverse power (default 1), for rbf it is epsilon (default 1e5).
 """
 if method == 'inv':
 if num_neighbs is None:
 num_neighbs = 4
 if param is None:
 param = 1

 elif method == 'rbf':
 if num_neighbs is None:
 num_neighbs = 7
 if param is None:
 param = 1e5

 elif method == 'corrfun':
 if num_neighbs is None:
 num_neighbs = 4
 if param is None:
 raise ValueError("'corrfun' method requires param to be "\
 "an NPZ file name containing the corrs and bins arrays.")
 c = np.load(param)
 self._corrs = c['corrs']
 self._bins = c['bins']

 else:
 raise NotImplementedError("Interpolation method %s not supported" \
 % method)

 self._method = method
 self._neighbs = num_neighbs
 self._radius = radius
 self._par = param

 def num_neighbs(self):
 return self._neighbs

 def radius(self):
 return self._radius

[docs] def set_scene(self, tracer_pos, interp_points, data):
 """
 Records scene data for future interpolation using the same scene.

 Arguments:
 tracer_pos - (n,3) array, the x,y,z coordinates of one tracer per row,
 in [m]
 interp_points - (m,3) array, coordinates of points where interpolation
 will be done.
 data - (n,d) array, the for the d-dimensional data for tracer n. For
 example, in velocity interpolation this would be (n,3), each tracer
 having 3 components of velocity.
 """
 self.__tracers = tracer_pos
 self.__interp_pts = interp_points
 self.__data = data

 # empty the neighbours cache:
 self.__dists = None
 self.__active_neighbs = None

[docs] def trim_points(self, which):
 """
 Remove interpolation points from the scene.

 Arguments:
 which - a boolean array, length is number of current particle list
 (as given in set_scene), True to trim a point, False to keep.
 """
 keep = ~which
 self.__interp_pts = self.__interp_pts[keep]
 if self.__dists is not None:
 self.__dists = self.__dists[keep]
 self.__active_neighbs = self.__active_neighbs[keep]

 def _forego_laziness(self):
 """
 Populate the neighbours cache.
 """
 self.__dists, self.__active_neighbs = select_neighbs(
 self.__tracers, self.__interp_pts, self._radius, self._neighbs)

 if self._method == 'rbf':
 self.__tracer_dists, _ = select_neighbs(
 self.__tracers, self.__tracers, self._radius, self._neighbs)

[docs] def which_neighbours(self):
 """
 Finds the neighbours that would be selected for use at each
 interpolation point, given the current scene as set by set_scene().

 Returns:
 (m,n) boolean array, True where tracer :math:`j=1...n` is a neighbour
 of interpolation point :math:`i=1...m` under the reigning selection
 criteria.
 """
 if self.__active_neighbs is None:
 self._forego_laziness()

 return self.__active_neighbs

 def current_dists(self):
 if self.__active_neighbs is None:
 self._forego_laziness()

 return self.__dists

[docs] def interpolate(self, subset=None):
 """
 Performs an interpolation over the recorded scene.

 Arguments:
 subset - a neighbours selection array, such as returned from
 :meth:`which_neighbours`, to replace the recorded selection. Default
 value (None) uses the recorded selection. The recorded selection
 is not changed, so ``subset`` is forgotten after the call.

 Returns:
 an (m,3) array with the interpolated value at the position of each
 of m particles.
 """
 # Check that the cache is populated:
 if self.__active_neighbs is None:
 self._forego_laziness()

 act_neighbs = self.__active_neighbs if subset is None else subset

 # If for some reason tracking failed for a whole frame,
 # interpolation is impossible at that frame. This checks for frame
 # tracking failure.
 if len(self.__tracers) == 0:
 # Temporary measure until I can safely discard frames.
 warnings.warn("No tracers im frame, interpolation returned zeros.")
 ret_shape = self.__data.shape[-1] if self.__data.ndim > 1 else 1
 return np.zeros((self.__interp_pts.shape[0], ret_shape))

 if self._method == 'inv':
 return inv_dist_interp(self.__dists, act_neighbs, self.__data,
 self._par)

 if self._method == 'rbf':
 return rbf_interp(self.__tracer_dists, self.__dists, act_neighbs,
 self.__data, self._par)

 if self._method == 'corrfun':
 return corrfun_interp(self.__dists, act_neighbs, self.__data,
 self._corrs, self._bins)

 # This isn't supposed to ever happen. The constructor should fail.
 raise NotImplementedError("Interpolation method %s not supported" \
 % self._method)

[docs] def __call__(self, tracer_pos, interp_points, data):
 """
 Sets up the necessary parameters, and performs the interpolation.
 Does not change the scene set by set_scene if any, so may be used
 for any off-scene interpolation.

 Arguments:
 tracer_pos - (n,3) array, the x,y,z coordinates of one tracer per row,
 in [m]
 interp_points - (m,3) array, coordinates of points where interpolation
 will be done.
 data - (n,d) array, the for the d-dimensional data for tracer n. For
 example, in velocity interpolation this would be (n,3), each tracer
 having 3 components of velocity.

 Returns:
 vel_interp - an (m,3) array with the interpolated value at the position
 of each particle, [m/s].
 """
 # If for some reason tracking failed for a whole frame, interpolation
 # is impossible at that frame. This checks for frame tracking failure.
 if len(tracer_pos) == 0:
 # Temporary measure until I can safely discard frames.
 warnings.warn("No tracers im frame, interpolation returned zeros.")
 ret_shape = data.shape[-1] if data.ndim > 1 else 1
 return np.zeros((interp_points.shape[0], ret_shape))

 dists, use_parts = select_neighbs(tracer_pos, interp_points,
 self._radius, self._neighbs)

 if self._method == 'inv':
 return inv_dist_interp(dists, use_parts, data, self._par)

 elif self._method == 'rbf':
 tracer_dists = select_neighbs(tracer_pos, tracer_pos,
 self._radius, self._neighbs)[0]
 return rbf_interp(tracer_dists, dists, use_parts, data, self._par)

 elif self._method == 'corrfun':
 return corrfun_interp(dists, use_parts, data,
 self._corrs, self._bins)

 else:
 # This isn't supposed to ever happen. The constructor should fail.
 raise NotImplementedError("Interpolation method %s not supported" \
 % self._method)

[docs] def neighb_dists(self, tracer_pos, interp_points):
 """
 The distance from each interpolation point to each data point of those
 used for interpolation. Assumes, for now, a constant number of
 neighbours.

 Arguments:
 tracer_pos - (n,3) array, the x,y,z coordinates of one tracer per row,
 in [m]
 interp_points - (m,3) array, coordinates of points where interpolation
 will be done.

 Returns:
 ndists - an (m,c) array, for c closest neighbours as defined during
 object construction.
 """
 dists, use_parts = select_neighbs(tracer_pos, interp_points,
 None, self._neighbs)
 ndists = np.zeros((interp_points.shape[0], self._neighbs))

 for pt in xrange(interp_points.shape[0]):
 # allow assignment of less than the desired number of neighbours.
 ndists[pt] = dists[pt, use_parts[pt]]

 return ndists

[docs] def save_config(self, cfg):
 """
 Adds the keys necessary for recreating this interpolant into a
 configuration object. It is the caller's responsibility to do a
 writeback to file.

 Arguments:
 cfg - a ConfigParser object.
 """
 if not cfg.has_section("Interpolant"):
 cfg.add_section("Interpolant")
 cfg.set('Interpolant', 'radius', str(self.radius()))
 cfg.set('Interpolant', 'num_neighbs', str(self.num_neighbs()))
 cfg.set('Interpolant', 'param', str(self._par))
 cfg.set('Interpolant', 'method', self._method)

[docs]def read_interpolant(conf_fname):
 """
 Builds an Interpolant object based on values in an INI-formatted file.

 Arguments:
 conf_fname - path to configuration file.

 Returns:
 an Interpolant object constructed from values in the configuration file.
 """
 parser = SafeConfigParser()
 parser.read(conf_fname)

 # Optional arguments:
 kwds = {}
 if parser.has_option('Interpolant', 'num_neighbs'):
 kwds['num_neighbs'] = parser.getint('Interpolant', 'num_neighbs')
 if parser.has_option('Interpolant', 'radius'):
 kwds['radius'] = parser.getfloat('Interpolant', 'radius')
 if parser.has_option('Interpolant', 'param'):
 kwds['param'] = parser.getfloat('Interpolant', 'param')

 return Interpolant(parser.get('Interpolant', 'method'), **kwds)

 © Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

_downloads/repeated_interpolation.html

As an example of using repeated interpolation at the same place, this notebook performs a consistency-checking process, a simplified version of the method introduced by B. Lüthi [1]

Our first move is to open the dual (tracers + inertial particles) scene data. If you are not familiar with the DualScene class yet, the notebook doc/hdf5_scene_analysis.ipynb has the introduction you need.

In [15]:

%cd ../data
from flowtracks.scene import read_dual_scene
scene = read_dual_scene('../data/seq_hdf.cfg')

/home/yosef/postptv/data

We'll use Inverse Distance Weighting, so as not to weigh down the computation. Furthermore, we tell the interpolant to select candidate tracers within a certain radius. Inside this radius, we'll be able to take subsamples of any size, as we'll later see.

In [16]:

from flowtracks.interpolation import Interpolant
interp = Interpolant('inv', None, radius=0.010, param=1.5)

Now, let's find a nice frame and pick a particle with enough tracers around it (at least 10 in this case, so we have enough subsamples to do statistics).

In [17]:

import numpy as np

for frame, _ in scene.iter_segments(-1): # recall that iter_segments returns two consecutive frames.
 if len(frame.tracers) == 0:
 continue

 # Here we start to use the repeated-interpolation machinery,
 # By informing the interpolant of the current frame data,
 # and then querying it about that data without having to repeat it.
 interp.set_scene(frame.tracers.pos(), frame.particles.pos(),
 frame.tracers.velocity())
 neighb_base = interp.which_neighbours()

 # Check that we have a particle with the desired number of tracers.
 candidates = neighb_base.sum(axis=1) >= 10
 if candidates.any():
 break

Note that we found one already in the first frame, but that was to be expected. The loop is usually necesary when you are not just looking for one particle, but either you are doing a statistic of several particles, or you have very strict search criteria which wouldn't be matched exactly right away.

In [18]:

frame.particles.time()

 Out[18]:

10001

Anyway, we have a particle. So now we can tell the interpolant that from now on, this will be the only interpolation point, by giving a mask containing only one True value.

In [19]:

selector = np.ones_like(candidates)
selector[candidates.nonzero()[0][0]] = False # The first with enough tracers.
interp.trim_points(selector)

Now the gist of the method is that we go over different combinations of 4 particles out of the neighbour 10, and check the standard deviation of interpolation results, compared to their RMS.

In [22]:

from scipy.misc import comb
num_combs = min([50, comb(10, 4, exact=True)])

Collect loop results:
samples = np.empty((num_combs, 3))

All combinations are generated using these arrays, based on the
initial full-neighbour selection.
neighb_base = interp.which_neighbours()
where_active = np.nonzero(neighb_base[0])[0]
neighb_comb = np.empty_like(neighb_base)

for cix in xrange(num_combs):
 neighb_comb[...] = False
 neighb_ix = np.random.permutation(where_active)[4]
 neighb_comb[0, neighb_ix] = True

 samples[cix] = interp.interpolate(neighb_comb)

Finally, the statistics:
rms = np.linalg.norm(samples, axis=0) / np.sqrt(num_combs)
rel_std = np.std(samples, axis=0)/ rms # num_parts x 3
print "Relative standard deviation: " + str(rel_std)

Relative standard deviation: [0.97986067 0.77922932 0.90291174]

Well, this particle seems to have relatively inconsistent fluid velocity interpolation, although in the Y coordinate prediction is more consistent than the others. Well then. Let's not get discouraged: there are many more particles in the data set, and surely by averaging over all of them, we can find the true consistency of the data set. But this is not for a short tutorial like this.

References:

[1] B. Lüthi et al., Lagrangian multi-particle statistics, 2007, DOI: 10.1080/14685240701522927

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Flowtracks 1.0 documentation »

 All modules for which code is available

		flowtracks.an_scene

		flowtracks.analysis

		flowtracks.graphics

		flowtracks.interpolation

		flowtracks.io

		flowtracks.pairs

		flowtracks.particle

		flowtracks.scene

		flowtracks.sequence

		flowtracks.smoothing

		flowtracks.trajectory

 © Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

_modules/flowtracks/particle.html

 Navigation

 		
 index

 		
 modules |

 		Flowtracks 1.0 documentation »

 		Module code »

 Source code for flowtracks.particle

-*- coding: utf-8 -*-

"""
This class is needed for modeling the dynamics of a particle in a flow scene.
"""

import numpy as np

[docs]class Particle(object):
 """
 A class to hold particle properties.
 """
 def __init__(self, diameter, density):
 """
 Arguments:
 diameter - particle diameter, [m]
 density - particle density, [kg/m^3]
 """
 self.diam = diameter
 self.density = density

 def volume(self):
 return np.pi * self.diam**3 / 6.

 def mass(self):
 return self.density * self.volume()

 © Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_modules/flowtracks/io.html

 Navigation

 		
 index

 		
 modules |

 		Flowtracks 1.0 documentation »

 		Module code »

 Source code for flowtracks.io

-*- coding: utf-8 -*-

"""
The main entry points for using the module are the :func:`trajectories`
function (or its counterpart :func`iter_trajectories`) for reading the data
for a scene; and either :func:`save_trajectories` or
:func:`save_particles_table` for saving scene data in, respectively, an obsolete
format based on a directory of NPZ files, or in the newer, recommended, HDF5
format.

The trajectory reader, unless otherwise noted, will try to infer the format
from the file name (see :func:`infer_format`).

The rest of the content of this module is composed of readers and writers for
the various formats. They are documented here alongside the main entry points,
so that users may access them directly if needed.
"""
import os, os.path, re
from ConfigParser import SafeConfigParser
from StringIO import StringIO

import numpy as np
from scipy import io
import tables

from .particle import Particle
from .trajectory import Trajectory, mark_unique_rows, \
 Frame, take_snapshot, trajectories_in_frame

class FramesIterator(object):
 def __init__(self, fname_tmpl, fmt, skip, first=None, last=None):
 """
 Arguments:
 fname_tmpl - a template file name representing all ptv_is/xuap files in
 the directory, with exactly one '%d' representing the frame number.
 fmt - a dtype object describing the table structure to be read.
 skip - number of header lines to skip in each file.
 first, last - inclusive range of frames to read, rel. filename
 numbering.
 """
 self._frmix = 0
 self._read_frame = lambda fix: np.atleast_1d(
 np.loadtxt(fname_tmpl % fix, dtype=fmt, skiprows=skip))

 dirname, basename = os.path.split(fname_tmpl)
 is_data_file = re.compile(basename.replace('%d', '(\d+)', 1))

 # Collect existing frames. This is necessary to ensure that frames are
 # processed in the correct order.
 self._frame_nums = []
 for name in os.listdir(dirname):
 match = is_data_file.match(name)
 if match is None: continue
 frame = int(match.group(1))

 if first is not None and frame < first: continue
 if last is not None and frame > last: continue
 # Note that we're reading one extra frame, otherwise the last frame
 # has 0 path segments.

 self._frame_nums.append(frame)

 # Process frames in order.
 self._frame_nums.sort()

 def __iter__(self):
 return self

 def next(self):
 """
 Returns:
 frm_num - frame number as recorded in the file names.
 frame - a table corresponding to the format (``fmt``) given to
 __init__().
 """
 curframenum = self._frmix
 if len(self._frame_nums) <= curframenum:
 raise StopIteration

 frame = self._read_frame(self._frame_nums[curframenum])
 self._frmix += 1
 return self._frame_nums[curframenum], frame

class SingleFileIterator(object):
 def __init__(self, fname, fmt):
 """
 Arguments:
 fname - file name containing concatenated ptv_is frames, separated by
 empty line.
 fmt - a dtype object describing the table structure to be read.
 skip - number of header lines to skip in each file.
 """
 self._frmix = 0
 self._f = open(fname, 'r')
 self._read_frame = lambda str_tbl: np.loadtxt(str_tbl, dtype=fmt)

 def __iter__(self):
 return self

 def next(self):
 """
 Returns:
 frm_num - frame number as recorded in the file names.
 frame - a table corresponding to the format (``fmt``) given to
 __init__().
 """
 curframenum = self._frmix

 # Make the stringio object to be used by read_frame
 lines = []
 for line in self._f:
 if re.match("^\s*$", line):
 break
 lines.append(line)

 if len(lines) == 0:
 raise StopIteration # EOF

 str_tbl = StringIO("".join(lines))
 frame = self._read_frame(str_tbl)
 self._frmix += 1
 return curframenum, frame

 def __def__(self):
 self._f.close()

def collect_particles(fname_tmpl, frame, path_seg=False):
 """
 Going backwards over trajAcc files [2], starting from a given frame,
 collect the data for all particles whose path begins in earlier frames and
 go as far as the given frame.

 Arguments:
 fname_tmpl - a format-string with one %d where the frame number should be
 inserted.
 frame - the frame number.
 path_seg - if True, find for each particle also the particle matching it in
 the next time step, so that acceleration can be calculated. Discarts
 unmatched particles.

 Returns:
 a table with columns 0-5,33 from the files, combined from all lines in all
 files that belong to particles in frame ``frame``. If path_seg is True, the
 table has two layers (a 2,n,7 array), the first is the particles in the
 given frame, the second is their matches in the next time step.
 """
 selected = []
 cur_frame = frame
 fname_tmpl = os.path.expanduser(fname_tmpl)

 while os.path.exists(fname_tmpl % cur_frame):
 table = np.loadtxt(fname_tmpl % cur_frame, usecols=(0,1,2,3,4,5,33))
 path_age = frame - cur_frame

 if path_seg is True:
 segs = np.nonzero((table[:,-1] == path_age) & \
 (np.roll(table[:,-1], -1) == path_age + 1))[0]
 in_frame = np.concatenate(
 (table[segs,:][None,...], table[segs + 1,:][None,...]), axis=0)
 else:
 in_frame = table[table[:,-1] == path_age]

 # When no previous path is long enough to reach ``frame``:
 if in_frame.shape[0] == 0:
 break

 selected.append(in_frame)
 cur_frame -= 1

 if path_seg is True:
 all_rows = np.concatenate(selected, axis=1)
 return all_rows[:,mark_unique_rows(all_rows[0])]
 else:
 all_rows = np.vstack(selected)
 return all_rows[mark_unique_rows(all_rows)]

[docs]def trajectories_mat(fname):
 """
 Extracts all trajectories from a Matlab file. the file is formated as a
 list of trajectory record arrays, containing attributes 'xf', 'yf', 'zf'
 for position, 'uf', 'vf', 'wf' for velocity, and 'axf', 'ayf', 'azf' for
 acceleration.

 Arguments:
 fname - path to the Matlab file.

 Returns:
 trajects - a list of :class:`~flowtracks.trajectory.Trajectory` objects,
 one for each trajectory contained in the mat file.
 """
 data = io.loadmat(os.path.expanduser(fname))
 # Get the workspace variable holding the trajectories:
 data_name = [s for s in data.keys() \
 if (not s.startswith('__')) and (not s == 'directory')][0]
 raw = data[data_name][:,0]

 trajects = []
 for traj in raw:
 # also convert data from mm to m.
 pos = np.hstack((traj['xf'], traj['yf'], traj['zf']))/1000.
 vel = np.hstack((traj['uf'], traj['vf'], traj['wf']))/1000.
 accel = np.hstack((traj['axf'], traj['ayf'], traj['azf']))/1000.
 t = traj['t'].squeeze()
 trajid = traj['trajid'][0,0]
 trajects.append(Trajectory(pos, vel, t, trajid, accel=accel))

 return trajects

[docs]def trajectories_acc(fname, first=None, last=None):
 """
 Extract all trajectories in a directory of trajAcc files.

 Arguments:
 fname - a template file name representing all trajAcc files in the
 directory, with exactly one '%d' representing the frame number.
 first, last - inclusive range of frames to read, rel. filename numbering.

 Returns:
 trajects - a list of :class:`~flowtracks.trajectory.Trajectory` objects,
 one for each trajectory contained in the mat file.
 """
 trajects = []
 dirname, basename = os.path.split(os.path.expanduser(fname))
 is_data_file = re.compile(basename.replace('%d', '(\d+)', 1))

 for fname in os.listdir(dirname):
 match = is_data_file.match(fname)
 if match is None: continue
 frame = int(match.group(1))

 if first is not None and frame < first: continue
 if last is not None and frame >= last: break

 table = np.loadtxt(os.path.join(dirname, fname),
 usecols=(0,1,2,3,4,5,6,7,8,33))
 traj_starts = np.nonzero(table[:,-1] == 0)[0]
 traj_ends = np.r_[traj_starts[1:], table.shape[0]]

 for s, e in zip(traj_starts, traj_ends):
 trajects.append(Trajectory(
 table[s:e,0:3], table[s:e,3:6], table[s:e,-1] + frame,
 len(trajects), accel= table[s:e,6:9]))

 return trajects

[docs]def iter_trajectories_ptvis(fname, first=None, last=None, frate=1., xuap=False,
 traj_min_len=None):
 """
 Extract all trajectories in a directory of ptv_is/xuap files, as
 generated by programs in the 3d-ptv/pyptv family.

 Arguments:
 fname - a template file name representing all ptv_is/xuap files in the
 directory, with exactly one '%d' representing the frame number. If
 no '%d' is found, the input is assumed to be in the Ron Shnapp
 format- single file of concatenated ptv_is files, each stripped of
 the particle count line (first line) and separated from the next by
 an empty line.
 first, last - inclusive range of frames to read, rel. filename numbering.
 frate - frame rate, used for calculating velocities by backward
 derivative.
 xuap - The format is extended with colums for velocity and acceleration.
 traj_min_len - do not include trajectories shorter than this many frames.

 Yields:
 each of the trajectories in the ptv_is data in order, as a
 :class:`~flowtracks.trajectory.Trajectory` instance with velocity and
 acceleration.
 """
 fname = os.path.expanduser(fname)

 if xuap:
 fmt = np.dtype([('prev', 'i4'), ('next', 'i4'), ('pos', '3f8'),
 ('pos_int', '3f8'), ('vel', '3f8'), ('acc', '3f8')])
 skip = 0
 count_base = 1
 def_tr_len = 2
 else:
 fmt = np.dtype([('prev', 'i4'), ('next', 'i4'), ('pos', '3f8')])
 skip = 1
 count_base = 0
 def_tr_len = 2

 if traj_min_len is None:
 traj_min_len = def_tr_len

 frames = []
 if '%d' in fname:
 frm_iter = FramesIterator(fname, fmt, skip, first, last)
 else:
 frm_iter = SingleFileIterator(fname, fmt)

 # In the first frame, every particle starts a trajectory.
 frame_num, table = frm_iter.next()

 pos = table['pos']
 if not xuap: pos /=1000.

 if 'vel' in fmt.fields:
 vel = table['vel']
 else:
 vel = np.zeros_like(pos)

 max_traj = table.shape[0]
 trids = np.arange(max_traj)
 frame = np.hstack((pos, vel, np.ones((max_traj, 1))*frame_num,
 trids[:,None]))
 frames.append(frame)

 traj_starts = {} # what is the starting frame for each trajectory.
 for trid in trids:
 traj_starts[trid] = 0

 trajects = {}

 # Single-frame trajectories in first frame:
 ending = table['next'] - count_base == -2
 if ending.any():
 ending_trids = np.atleast_1d(np.int_(frame[ending,-1]))
 for trid in ending_trids:
 trajects[trid] = frame[frame[:,-1] == trid]

 frame_buffer_start = 0

 # Main loop, sequentially read each frame and process:
 for fix, frm in enumerate(frm_iter):
 frame_num, table = frm

 if table.ndim == 0:
 frames.append(None)
 continue
 # We assume that the next frame will have no continuing particles,
 # and this case is caused by detection failure. Otherwise the code
 # that generated the data has a bug that can't be dealt with here.

 # Continue existing trajectories into this frame:
 cont = table['prev'] - count_base > -1
 traj = np.empty(table['prev'].shape)

 if frames[-1] is not None:
 prev_ix = table['prev'][cont] - count_base
 traj[cont] = frames[-1][:,-1][prev_ix]

 # Start new trajectories:
 num_new_traj = np.sum(~cont)
 traj[~cont] = np.arange(max_traj, max_traj + num_new_traj)
 for trid in traj[~cont]:
 traj_starts[trid] = fix + 1
 max_traj += num_new_traj

 # Consolidate into frame table.
 pos = table['pos']
 if not xuap: pos /= 1000.
 t = np.ones((table.shape[0], 1))*frame_num

 if 'vel' in fmt.fields:
 vel = table['vel']
 else:
 vel = np.zeros_like(pos)

 frame = np.hstack((pos, vel, t, traj[:,None]))
 if 'vel' not in fmt.fields and frames[-1] is not None:
 # Update velocity of previous frame's continuing particles
 frames[-1][prev_ix,3:6] = \
 (pos[cont] - frames[-1][prev_ix,:3]) * frate
 frames.append(frame)

 # Make Trajectory objects from fully-read trajectories, so we can
 # discard early frames they're in.
 ending = table['next'] - count_base == -2
 if not ending.any():
 continue

 ending_trids = np.atleast_1d(np.int_(frame[ending,-1]))
 ending_starts = np.r_[[traj_starts[trid] for trid in ending_trids]]

 # Filter short trajectories:
 traj_lens = fix - ending_starts + 2
 long_trjs = traj_lens >= traj_min_len
 traj_lens = traj_lens[long_trjs]
 ending_trids = ending_trids[long_trjs]
 ending_starts = ending_starts[long_trjs]

 # Preallocate memory for speed.
 for trid, trlen in zip(ending_trids, traj_lens):
 trajects[trid] = np.empty((trlen, frames[-1].shape[-1]))

 for scanix, past_frame in enumerate(frames):
 if past_frame is None: continue

 in_frame = ending_starts <= scanix + frame_buffer_start
 for trid in ending_trids[in_frame]:
 traj_rel_ix = scanix + frame_buffer_start - traj_starts[trid]
 traj_locator = past_frame[:,-1] == trid
 trajects[trid][traj_rel_ix] = past_frame[traj_locator][0]

 # Discard frames that only have trajectories that ended.
 cont_trids = frame[~ending,-1]
 if not cont_trids.any():
 new_start = fix
 else:
 new_start = min([traj_starts[trid] for trid in cont_trids])

 frames = frames[new_start - frame_buffer_start :]
 frame_buffer_start = new_start

 # Convert the dictionary of trajectory arrays to list of Trajectory
 # objects and give them back.
 for trid in ending_trids:
 traj = trajects[trid]
 traj = Trajectory(traj[:,:3], traj[:,3:6], traj[:,6],
 np.int(traj[0,7]))

 # Add forward-difference acceleration:
 accel = np.empty_like(traj.velocity())
 accel[[-2,-1],:] = 0.
 accel[:-2] = (traj.velocity()[1:-1] - traj.velocity()[:-2]) * frate
 traj.create_property('accel', accel)

 # Get rid of the working memory.
 del trajects[trid]
 del traj_starts[trid]
 yield traj

[docs]def trajectories_ptvis(fname, first=None, last=None, frate=1., xuap=False,
 traj_min_len=None):
 """
 Extract all trajectories in a directory of ptv_is files, as generated by
 programs in the 3d-ptv/pyptv family. supports xuap files as well.

 Arguments:
 fname - a template file name representing all ptv_is/xuap files in the
 directory, with exactly one '%d' representing the frame number. If
 no '%d' is found, the input is assumed to be in the Ron format - single
 file of concatenated ptv_is files, each stripped of the particle count
 line (first line) and separated from the next by an empty line.
 first, last - inclusive range of frames to read, rel. filename numbering.
 frate - frame rate, used for calculating velocities by backward
 derivative.
 xuap - The format is extended with colums for velocity and acceleration.
 traj_min_len - do not include trajectories shorter than this many frames.

 Returns:
 each of the trajectories in the ptv_is/xuap data in order, as a
 :class:`~flowtracks.trajectory.Trajectory` instance with velocity and
 acceleration.
 """
 return [t for t in iter_trajectories_ptvis(fname, first, last, frate,
 xuap, traj_min_len)]

[docs]def trajectories(fname, first, last, frate, fmt=None, traj_min_len=None,
 iter_allowed=False):
 """
 Extract all trajectories in a given target location. The location format
 is interpreted based on the format of the data files, in the respective
 trajectories_* functions.

 Trajectories of one frame are filtered out.

 Arguments:
 fname - a template file name, as needed by the appropriate suboridinate
 function.
 first, last - inclusive range of frames to read, rel. filename numbering.
 frate - frame rate under which the film was shot - needed for ptvis
 trajectories.
 traj_min_len - on some formats, (currently ptv_is and xuap) it is possible
 to filter trajectories with less frames than this, saving memory.
 iter_allowed - may return an iterator instead of a list.

 Returns:
 a list (or iterator) of Trajectory objects.
 """
 # Infer format:
 if fmt is None:
 fmt = infer_format(fname)

 filter_needed = True

 if fmt == 'mat':
 traj = trajectories_mat(fname)

 elif fmt == 'npz':
 traj, _ = load_trajectories(fname, first, last)

 elif fmt == 'acc':
 traj = trajectories_acc(fname, first, last)

 elif fmt == 'ptvis':
 filter_needed = False
 if iter_allowed:
 traj = iter_trajectories_ptvis(fname, first, last, frate,
 traj_min_len=traj_min_len)
 else:
 traj = trajectories_ptvis(fname, first, last, frate,
 traj_min_len=traj_min_len)

 elif fmt == 'xuap':
 traj = trajectories_ptvis(fname, first, last, frate, xuap=True,
 traj_min_len=traj_min_len)

 elif fmt == 'hdf':
 traj = trajectories_table(fname, first, last)

 if filter_needed:
 if traj_min_len is None:
 traj_min_len = 2
 traj = [tr for tr in traj if len(tr) >= traj_min_len]

 return traj

[docs]def infer_format(fname):
 """
 Try to guess the format of a particles data file by its name.

 Arguments:
 fname - the file name from which to guess the format.

 Returns:
 A string marking the format. Currently one of 'acc', 'mat', 'xuap',
 'npz', 'hdf' or 'ptvis'.
 """
 if fname.endswith('mat'):
 return 'mat'
 elif fname.endswith('/'):
 return 'npz'
 elif 'ptv_is' in fname or fname.endswith('.txt'):
 return 'ptvis'
 elif 'xuap' in fname:
 return 'xuap'
 elif fname.endswith('h5') or fname.endswith('hdf'):
 return 'hdf'
 else:
 return 'acc'

def collect_particles_mat(fname, frame, path_seg=False):
 """
 The same as collect_particles, but uses mat files as generated by the PTV
 post-processing code.
 """
 trajects = trajectories_mat(fname)
 return collect_particles_generic(trajects, frame, path_seg)

def collect_particles_generic(trajects, frame, path_seg=False):
 """
 Collect from a list of trajectories the particles appearing in a given
 frame.

 Arguments:
 trajects - a list of Trajectory objects.
 frame - the frame number.
 path_seg - if True, find for each particle also the particle matching it in
 the next time step, so that acceleration can be calculated. Discarts
 unmatched particles.

 Returns:
 a table with columns 0-2 for position, 3-5 for velocity, 6 for frame
 number and 7 for trajectory id. If path_seg is True, the table has two
 layers (a 2,n,7 array), the first is the particles in the given frame,
 the second is their matches in the next time step.
 """
 selected = []
 for traj in trajects:
 if path_seg is True:
 t = np.nonzero((traj.time()[:-1] == frame) & \
 (traj.time()[1:] == frame + 1))[0]
 if len(t) == 0: continue

 t = t[0]
 sel = traj[t : t + 2].reshape(2, 1, -1)

 else:
 t = np.nonzero(traj.time() == frame)[0]
 if len(t) == 0: continue
 sel = traj[t[0]]

 selected.append(sel)

 if len(selected) == 0:
 return np.empty((2,0,7))

 if path_seg is True:
 all_rows = np.concatenate(selected, axis=1)
 return all_rows[:,mark_unique_rows(all_rows[0])]
 else:
 all_rows = np.vstack(selected)
 return all_rows[mark_unique_rows(all_rows)]

[docs]def read_frame_data(conf_fname):
 """
 Read a configuration file in INI format, which specifies the locations
 where particle positions and velocities should be read from, and directly
 stores some scalar frame values, like particle densidy etc.

 Arguments:
 conf_fname - name of the config file

 Returns:
 particle - a Particle object holding particle properties.
 frate - the frame rate at which the scene was shot.
 frame, next_frame - Frame objects holding the tracers and particles data
 for the time points indicated in config, and the one immediately
 following it.
 """
 parser = SafeConfigParser()
 parser.read(conf_fname)

 particle = Particle(
 parser.getfloat("Particle", "diameter"),
 parser.getfloat("Particle", "density"))

 first_frame = parser.getint("Scene", "frame")
 frate = parser.getfloat("Scene", "frame rate")

 fname = parser.get("Scene", "tracer_file")
 tracer_trjs = trajectories(fname, first_frame, first_frame + 2,
 frate, None)
 tracer_ixs = trajectories_in_frame(tracer_trjs, first_frame, segs=True)

 fname = parser.get("Scene", "part_file")
 part_trjs = trajectories(fname, first_frame, first_frame + 2, frate, None)
 part_ixs = trajectories_in_frame(part_trjs, first_frame, segs=True)

 data = []
 for frame_num in [first_frame, first_frame + 1]:
 frame = Frame()
 frame.tracers = take_snapshot([tracer_trjs[t] for t in tracer_ixs],
 frame_num, tracer_trjs[0].schema())

 frame.particles = take_snapshot([part_trjs[t] for t in part_ixs],
 frame_num, part_trjs[0].schema())

 data.append(frame)

 return particle, frate, data[0], data[1]

[docs]def save_trajectories(output_dir, trajects, per_traject_adds, **kwds):
 """
 Save for each trajectory the data for this trajectory, as well as
 additional data attached to each trajectory, such as trajectory
 reconstructions. Creates in the output directory one npz file per
 trajectory, containing the arrays of the trajectory as well as the added
 arrays.

 Arguments:
 output_dir - name of the directory where output should be placed. Will be
 created if it does not exist.
 trajects - a list of Trajectory objects.
 per_traject_adds - a dictionary, whose keys are the array names to use when
 saving, and vaslues are trajid-keyed dictionaries with the actual
 arrays to save for each trajectory.
 kwds - free arrays to save in the output dir
 """
 if not os.path.exists(output_dir):
 os.makedirs(output_dir)

 for traj in trajects:
 save_data = dict(('traj:' + k, v) \
 for k, v in traj.as_dict().iteritems())
 for k, v in per_traject_adds.iteritems():
 save_data[k] = v[traj.trajid()]

 np.savez(os.path.join(output_dir, 'traj_%d' % traj.trajid()),
 **save_data)

 # Save non-trajectory arrays:
 for k, v in kwds.iteritems():
 np.save(os.path.join(output_dir, k), v)

[docs]def save_particles_table(filename, trajects, trim=None):
 """
 Save trajectory data as a table of particles, with added columns for time
 (frame number) and trajid - the last one may be indexed. Note that no extra
 (per-trajectory or meta) data is allowed here, unlike the npz save format.

 Arguments:
 filename - name of output PyTables HDF5 file to create. The 'h5' extension
 is recommended so that infer_format() knows what to do with it.
 trajects - a list of Trajectory objects to save.
 trim - if None, remove this many time points from each end of each
 trajectory before saving.
 """
 table = None
 trim_len = 0 if trim is None else trim * 2

 outfile = tables.openFile(filename, mode='w')
 bounds_tab = outfile.createTable('/', 'bounds',
 np.dtype([('trajid', int, 1), ('first', int, 1), ('last', int, 1)]))

 for traj in trajects:
 if len(traj) - trim_len <= 0:
 continue

 # First trajectory creates the table:
 if table is None:
 # Format of records in a trajectory array :
 fields = [('trajid', int, 1)] + [(field,) + desc \
 for field, desc in traj.ext_schema().iteritems()]
 dtype = np.dtype(fields)
 table = outfile.createTable('/', 'particles', dtype)

 arr = np.empty(len(traj) - trim_len, dtype=dtype)
 arr['trajid'] = traj.trajid()

 for k, v in traj.as_dict().iteritems():
 if trim is None:
 arr[k] = v
 else:
 arr[k] = v[trim:-trim]

 table.append(arr)
 bounds_tab.append([
 (traj.trajid(), traj.time()[trim_len], traj.time()[-trim_len])])

 table.cols.trajid.createIndex()
 table.cols.time.createIndex()
 bounds_tab.cols.trajid.create_index()

 outfile.flush()
 outfile.close()

[docs]def trajectories_table(fname, first=None, last=None):
 """
 Reads trajectories from a PyTables HDF5 file, as saved by
 save_particles_table().

 Arguments:
 fname - path to file to read.
 first, last - inclusive range of frames to read.

 Returns:
 trajects - a list of Trajectory objects, each trimmed to the frame range.
 """
 outfile = tables.openFile(fname, mode='r')
 table = outfile.getNode('/particles')

 query_string = ('(trajid == trid)')
 if first is not None:
 query_string += " & (time >= %d)" % first
 if last is not None:
 query_string += " & (time <= %d)" % last

 trajects = []
 for trid in np.unique(table.col('trajid')):
 arr = table.read_where(query_string)
 kwds = dict((field, arr[field]) for field in arr.dtype.fields \
 if field != 'trajid')
 kwds['trajid'] = trid
 trajects.append(Trajectory(**kwds))

 outfile.close()
 return trajects

[docs]def load_trajectories(res_dir, first=None, last=None):
 """
 Load a series of trajectories and associated data from a directory
 containing npz trajectory files, as created by save_trajectories().

 Arguments:
 res_dir - path to the directory holding the trajectory files.

 Returns:
 trajects - a list of Trajectory objects created from the files is res_dir
 per_traject_adds - a dictionary of named added date. Each value is a
 dictionary keyed by trajid.
 """
 res_dir = os.path.expanduser(res_dir)

 trajects = []
 per_traject_adds = {}

 for tr_file in os.listdir(res_dir):
 if not tr_file.endswith('.npz'): continue

 data = np.load(os.path.join(res_dir, tr_file))
 trajid = int(tr_file.split('.')[0][5:]) # traj_*.pyz

 kwds = {}
 for k in data.files:
 if k.startswith('traj:'):
 kwds[k[5:]] = data[k]
 else:
 per_traject_adds.setdefault(k, {})
 per_traject_adds[k][trajid] = data[k]

 if (first is not None) or (last is not None):
 in_range = np.ones(kwds['time'].shape, dtype=np.bool)
 if first is not None:
 in_range[kwds['time'] < first] = False
 if last is not None:
 in_range[kwds['time'] > last] = False
 # Note that we're reading one extra frame, otherwise the last frame
 # has 0 path segments.

 if in_range.sum() < 1:
 continue # Filter out empty trajectories (that are really empty
 # or completely out of range)

 for k in kwds.keys():
 kwds[k] = kwds[k][in_range]
 # per_traject_adds do not get the same treatment as it is
 # impossible to know their size. It is therefore up to the user to
 # create only per_traject_adds in the range matching the processed
 # range.

 kwds['trajid'] = trajid
 trajects.append(Trajectory(**kwds))

 return trajects, per_traject_adds

 © Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

_modules/flowtracks/pairs.html

 Navigation

 		
 index

 		
 modules |

 		Flowtracks 1.0 documentation »

 		Module code »

 Source code for flowtracks.pairs

-*- coding: utf-8 -*-
#Created on Thu Aug 15 14:38:58 2013

"""
Pair particles to closest tracers.
"""

import numpy as np
from .trajectory import trajectories_in_frame, take_snapshot

[docs]def particle_pairs(primary_trajects, secondary_trajects, trajids, time_points):
 """
 For each of a set of select particles in the primary trajectories, find
 the closest particle in the secondary set.

 Arguments:
 primary_trajects - a list of Trajectory objects, some of which contain the
 source points.
 secondary_trajects - a list of Trajectory objects, in which to look for the
 pair points.
 trajid, time_points - each an n-length array for n pairs to produce,
 holding correspondingly the trajectory id and index into the trajectory
 of the points in the primary set to which a pair is sought.

 Returns:
 pair_trid, pair_time - coordinates of the found pairs, element i describes
 the pair of particle i in (trajid, time_points). Format is the same as
 that of ``trajid``, ``time_points``. For particles without a match,
 returns -1 as the pair_time value.
 """
 # Output buffers:
 pair_trids = np.empty_like(time_points)
 pair_time = np.empty_like(time_points)

 # Filter the primary set to only contain the trajectories actually required
 unique_prim = np.unique(trajids)
 prim_traj = [t for t in primary_trajects if t.trajid() in unique_prim]
 frames = np.empty_like(time_points)

 # Typify primary/secondary on a per trajectory basis before combining them
 # into a single snapshot.
 for traj in prim_traj:
 traj_coords = trajids == traj.trajid()
 frames[traj_coords] = traj.time(time_points[traj_coords])

 unique_frames = np.unique(frames)
 schema = prim_traj[0].schema()

 # For each frame, create snapshots and compare positions.
 for frame_num in unique_frames:
 coord_locator = frames == frame_num
 prim_in_frame_ids = np.unique(trajids[coord_locator])
 prim_in_frame = [t for t in prim_traj if t.trajid() in prim_in_frame_ids]
 prim_parts = take_snapshot(prim_in_frame, frame_num, schema)

 sec_in_frame_ixs = trajectories_in_frame(secondary_trajects, frame_num,
 segs=True)
 sec_in_frame = [secondary_trajects[tix] for tix in sec_in_frame_ixs]

 if len(sec_in_frame) == 0:
 pair_trids[coord_locator] = -1
 pair_time[coord_locator] = -1
 continue

 sec_parts = take_snapshot(sec_in_frame, frame_num, schema)

 dists_sq = np.sum(
 (prim_parts.pos()[:,None,:] - sec_parts.pos()[None,:,:])**2,
 axis=2)
 pair_ixs = np.argmin(dists_sq, axis=1)
 pair_trids[coord_locator] = sec_parts.trajid(pair_ixs)
 pair_time[coord_locator] = frame_num # later transformed.

 # Transform frame numbers back into time index in the output array.
 unique_sec = np.unique(pair_trids)

 for traj in secondary_trajects:
 trid = traj.trajid()
 if trid not in unique_sec: continue
 pair_time[pair_trids == trid] -= traj.time(0)

 return pair_trids, pair_time

 © Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

_static/hdf5_scene_analysis.html

This tutorial goes through the steps of taking a dual scene (that is, a scene containing synchronous measurements of tracers and inertial particles in the same volume) and exploring and analysing the data.

We start with just the inertial particles. Our example data is stored in the postptv repository, in the data/ subdirectory. We open it like so:

In [3]:

from flowtracks.scene import Scene
particles = Scene('../data/particles.h5')

The Scene object allows us to iterate over the data, either trajectory by trajectory, or frame by frame. As an example of trajectory iteration, let's display a 2D view of the existing trajectories.

In [9]:

import matplotlib.pyplot as pl # Plotting package
Show results in the notebook:
%matplotlib inline

for traj in particles.iter_trajectories():
 # traj is a Trajectory object, supplied by the
 # flowtracks.trajectory module.
 pl.plot(traj.pos()[:,0], traj.pos()[:,1], '.')

pl.show()

[image:]0020

0015

0010

0005

0000

~0.005

-0.010

0015

-0

029
28,620 0,015 —0.010 -0.005 0000 0005 0010 0015

0020

This was easy. However, for large data sets this may be slow. I found that for most analyses it is better to iterate by frames, because we have far less frames than trajectories, and so the chunks that are being processed at each iteration are larger. Additionally, a lot of things you want to know require knowledge about the frame in which the particle is, and not just about the trajectory.

As an example, we'll find a nicely spaced frame, and show a quiver plot of particle positions and velocities.

In [15]:

for frame in particles.iter_frames():
 # frame is a ParticleSnapshot object, supplied by the
 # flowtracks.trajectory module.
 if len(frame) == 40:
 pl.quiver(frame.pos()[:,0], frame.pos()[:,1],
 frame.velocity()[:,0], frame.velocity()[:,1])
 break
pl.show()

[image:]o \
oot

oosf = N
\

0000 T Y, t

~0.005 7

-0.010 »

0015 -

-0.029
28020 0015 0010 0005 0000 0005 0010 0015

As you can see, our observation volume is about 3x3 centimeters, and there seems to be more going on on the upper side than the lower one - in this frame. We don't know what will happen in the next - this is turbulence!

Finally, a concept we will explore in the next section, is iteration over segments - pairs of consecutive frames, each containing only the trajectories that are also found in the other.

A dual scene¶

Now to analyse a dual scene. This is not much different. However, the scene requires, in addition to the data sources on particles and tracers, some more description: the particle properties and the common flow rate are required. So one way to create a dual scene, like the one we have in the data/ directory, is to provide it straight:

In [16]:

from flowtracks.scene import DualScene
from flowtracks.particle import Particle

part = Particle(500e-6, 1450) # diameter [m], density [kg/m^3]
scene = DualScene('../data/particles.h5', '../data/tracers.h5', frate=500, particle=part)
It is also possible to set a frame range other than all frames, see the docstring.

However, it is easier to use a configuration file containing all the data. Such a file is available in the data directory as an example:

In [24]:

cat ../data/seq_hdf.cfg

[Particle]

density = 1450

diameter = 500e-6

[Scene]

particles file = particles.h5

tracers file = tracers.h5

first frame = 10001

last frame = 10200

frame rate = 500

Note that the file refers to relative paths, so we'll first switch to the data directory. In your code, you should probably use absolute paths.

In [25]:

%cd ../data
from flowtracks.scene import read_dual_scene
scene = read_dual_scene('../data/seq_hdf.cfg')

/home/yosef/postptv/data

Now we can do calculations that relate both the tracers and the particles. Here, for example, we'll find the fluid velocity around each particle by interpolation from tracers. Like in the above example, Iteration is used to find an arbitrary frame according to some condition (here the number of particles is checked, just because it gives a nice plot). Then the fluid velocity is calculated and the quiver plot is painted so that the least tracer-like inertial particle is red, and the most tracer-like is blue. [note however that the scaling is misleading, the blue particles are not necessarily very good tracers]

In [42]:

from numpy.linalg import norm
from flowtracks.interpolation import Interpolant
interp = Interpolant('inv', 4, 1) # Inverse Distance weighting, 1/r, 4 neighbours.

for frame, next_frame in scene.iter_segments():
 # We don't actually use ``next_frame`` here.
 if len(frame.particles) == 40:
 vel_interp = interp(frame.tracers.pos(), frame.particles.pos(),
 frame.tracers.velocity())
 rel_vel = frame.particles.velocity() - vel_interp

 # Color by relative slip velocity
 c = norm(rel_vel, axis=1)
 c /= max(c)

 pos = frame.particles.pos()
 vel = frame.particles.velocity()
 pl.quiver(pos[:,0], pos[:,1], vel[:,0], vel[:,1], c)
 break
pl.show()

[image:]T
[

~0.005 L

-0.010

0015 -

-0.029
28020 0015 0010 0005 0000 0005 0010 0015

Analysis machinery¶

A loop such as the one above can be a recurring theme in our analysis code. Furthermore, we would like to read the file only once, and lump all analyses together. For this reason, the module flowtrack.analysis exists. It provides the analysis() function, which iterates over segments, applying user-supplied analysers. An analyser is a class that describes how an analysis is to be made, and what results are to be expected from it. Here, for example, is an analyser implementing the interpolation we have seen above, for a user-defined interpolant:

In [46]:

from flowtracks.analysis import GeneralAnalyser

class FluidVelocitiesAnalyser(GeneralAnalyser):
 def __init__(self, interp):
 """
 Arguments:
 interp - the Interpolant object to use for finding velocities.
 """
 self._interp = interp

 def descr(self):
 """
 Return a list of two tuples, each of the form
 (name, data type, row length), describing the arrays returned by
 analyse() for fluid velocity and relative velocity.
 """
 return [('fluid_vel', float, 3), ('rel_vel', float, 3)]

 def analyse(self, frame, next_frame):
 """
 Arguments:
 frame, next_frame - the Frame object for the currently-analysed frame
 and the one after it, respectively.

 Returns:
 a list of two arrays, each of shape (f,3) where f is the number of
 particles in the current frame. 1st array - fluid velocity. 2nd array
 - relative velocity.
 """
 vel_interp = self._interp(frame.tracers.pos(), frame.particles.pos(),
 frame.tracers.velocity())
 rel_vel = frame.particles.velocity() - vel_interp

 return [vel_interp, rel_vel]

Note the return values of analyse() are described by descr(). You can find this class too in flowtracks.analysis. An example of how to use it can be found in scripts/analyse_fhdf.py. We'll run the same example with our own values:

In [54]:

from flowtracks.analysis import analysis
analysis(scene, 'results_an.h5', 'seq_hdf.cfg', [FluidVelocitiesAnalyser(interp)])

This created a file called 'results_an.h5' in our working directory. It is another HDF file with the analysis results. Now we need to load this analysis in order to look at the results. After loading, any result column can be pulled out in full or partially. We can use this to plot a PDF of the relative velocity.

In [65]:

from flowtracks.an_scene import AnalysedScene
an_res = AnalysedScene('results_an.h5')
rel_vel = norm(an_res.collect(['rel_vel'])[0], axis=1)
print rel_vel

from flowtracks.graphics import pdf_graph
pdf_graph(rel_vel, 100)

[0.08909729 0.06412617 0.0348499 ..., 0.06492881 0.19591666
 0.07150005]

[image:]010 015 020 025 030 035 040

005

[-] Ausuap Aaqegoid

Note that we pulled out the 'rel_vel' analysis column, but we could just as easily pull out one of the trajectory columns, the AnalysedScene transparently knows where to look for the column you asked for.

And that's pretty much all there is to it. Except there is more. Check out the docstrings in the code, or ask on the openptv googlegroup for more information on what can be done.

_modules/flowtracks/sequence.html

 Navigation

 		
 index

 		
 modules |

 		Flowtracks 1.0 documentation »

 		Module code »

 Source code for flowtracks.sequence

-*- coding: utf-8 -*-
import numpy as np

from .io import trajectories, infer_format
from .particle import Particle
from .trajectory import take_snapshot, trajectories_in_frame, Frame
from ConfigParser import SafeConfigParser

[docs]class Sequence(object):
 """
 Tracks a dual particles database (for both inertial particles and
 tracers), allowing a number of underlying formats. Provides segment
 iteration and trajectory-mapping.
 """
 def __init__(self, frange, frate, particle, part_tmpl, tracer_tmpl,
 smooth_tracers=False, traj_min_len=0.):
 """
 Arguments:
 frange - tuple, (first frame #, after last frame #)
 frate - the frame rate at which the scene was shot.
 particle - a Particle object representing the suspended particles'
 properties.
 part_tmpl, tracer_tmpl - the filenames for particle- and tracer-
 databases respectively. Names must be as understood by
 :func:`flowtracks.io.trajectories'.
 smooth_tracers - if True, uses trajectory smoothing on the tracer
 trajectories when iterating over frames. Possibly out of date.
 traj_min_len - when reading trajectories (tracers and particles)
 discard trajectories shorter than this many frames.
 """
 self.part = particle
 self.frate = frate

 self._rng = frange
 self._ptmpl = part_tmpl
 self._trtmpl = tracer_tmpl
 self._smooth = smooth_tracers
 self._minlen = traj_min_len

 # No-op particle selector, can be changed by the setter below later.
 identity = lambda traj: traj
 self.set_particle_selector(identity)
 self.set_tracer_selector(identity)

 # This is just a cache. Else trajectories() would check every time.
 self._pfmt = infer_format(part_tmpl)
 self._trfmt = infer_format(tracer_tmpl)

[docs] def part_fname(self):
 """
 Returns the file name used for reading inertial particles database.
 """
 return self._ptmpl

[docs] def part_format(self):
 """
 Returns the format inferred for the inertial particles database.
 """
 return self._pfmt

[docs] def range(self):
 """
 Returns the frame number range set for the object, as a tuple (first,
 last).
 """
 return self._rng

[docs] def subrange(self):
 """
 Returns the earliest and latest time points covered by the subset of
 trajectories that the particle selector selects, bounded by the range
 restricting the overall sequence.
 """
 trs = self.particle_trajectories()
 mins = np.empty(len(trs))
 maxs = np.empty(len(trs))

 for trn, tr in enumerate(trs):
 t = tr.time()
 mins[trn] = t.min()
 maxs[trn] = t.max()

 return max(mins.min(), self._rng[0]), min(maxs.max(), self._rng[1])

[docs] def set_particle_selector(self, selector):
 """
 Sets a filter on the particle trajectories used in sequencing.

 Arguments:
 selector - a function which receives a list of
 :class:`~flowtracks.trajectory.Trajectory` objects and returns
 a sublist thereof.
 """
 self._psel = selector
 self.__ptraj = None

[docs] def set_tracer_selector(self, selector):
 """
 Sets a filter on the tracer trajectories used in sequencing.

 Arguments:
 selector - a function which receives a list of
 :class:`~flowtracks.trajectory.Trajectory` objects and returns
 a sublist thereof.
 """
 self._tsel = selector
 self.__ttraj = None

[docs] def particle_trajectories(self):
 """
 Return (and possibly generate and cache) the list of
 :class:`~flowtracks.trajectory.Trajectory` objects as selected by
 the particle selector.
 """
 if (self.__ptraj is not None):
 return self.__ptraj

 self.__ptraj = self._psel(trajectories(self._ptmpl, self._rng[0],
 self._rng[1], self.frate, self._pfmt, self._minlen))

 # Also caches the starts and ends of trajectories, so that accessing
 # only the ones relevant to a specific frame is easier.
 start_end = [(tr.time()[0], tr.time()[-1]) for tr in self.__ptraj]
 self.__pstarts, self.__pends = map(np.array, zip(*start_end))

 return self.__ptraj

[docs] def tracer_trajectories(self):
 """
 Return (and possibly generate and cache) the list of
 :class:`~flowtracks.trajectory.Trajectory` objects corresponding to
 tracers.
 """
 if (self.__ttraj is not None):
 return self.__ttraj

 ttraj = self._tsel(trajectories(self._trtmpl, self._rng[0],
 self._rng[1], self.frate, self._trfmt, self._minlen))

 if self._smooth:
 self.__ttraj = [tr.smoothed() for tr in ttraj]
 else:
 self.__ttraj = ttraj

 # Also caches the starts and ends of trajectories, so that accessing
 # only the ones relevant to a specific frame is easier.
 start_end = [(tr.time()[0], tr.time()[-1]) for tr in self.__ttraj]
 self.__tstarts, self.__tends = map(np.array, zip(*start_end))

 return self.__ttraj

[docs] def __iter__(self):
 """
 Iterate over frames. For each frame return the data for the tracers and
 particles in it, as a tuple containing two
 :class:`~flowtracks.trajectory.ParticleSnapshot` objects
 corresponding to the current frame data and the next frame's.

 Returns:
 A Python iteraor.
 """
 if not hasattr(self, '_act_rng'):
 self._act_rng = self._rng

 self._frame = self._act_rng[0]

 # Make sure the particle trajectory cache is populated.
 self.particle_trajectories()
 self.__schema = self.__ptraj[0].schema()
 if not (self.__ttraj is None):
 return self

 # Make sure the tracers cache is populated:
 self.tracer_trajectories()

 self.__tschem = self.__ttraj[0].schema()

 return self

[docs] def iter_subrange(self, first, last):
 """
 The same as :meth:`__iter__`, except it changes the frame range for
 the duration of the iteration.

 Arguments:
 first, last - frame numbers of the first and last frames in the
 acting range of frames from the sequence.

 Returns:
 A Python iteraor.
 """
 self._act_rng = (first, last)
 return self

 def next(self):
 if self._frame == self._act_rng[1]:
 del self._act_rng
 raise StopIteration

 frame = Frame()
 tracer_ixs = trajectories_in_frame(self.__ttraj, self._frame,
 self.__tstarts, self.__tends, segs=True)
 tracer_trjs = [self.__ttraj[t] for t in tracer_ixs]
 frame.tracers = take_snapshot(tracer_trjs, self._frame, self.__tschem)

 part_ixs = trajectories_in_frame(self.__ptraj, self._frame,
 self.__pstarts, self.__pends, segs=True)
 part_trjs = [self.__ptraj[t] for t in part_ixs]
 frame.particles = take_snapshot(part_trjs, self._frame, self.__schema)

 self._frame += 1

 next_frame = Frame()
 next_frame.tracers = take_snapshot(tracer_trjs, self._frame,
 self.__tschem)
 next_frame.particles = take_snapshot(part_trjs, self._frame,
 self.__schema)
 self._next_frame = next_frame

 return frame, next_frame

[docs] def map_trajectories(self, func, subrange=None, history=False, args=()):
 """
 Iterate over frames, for each frame call a function that generates a
 per-trajectory result and add the results up in a per-trajectory
 time-series.

 Arguments:
 func - the function to call. Returns a dictionary keyed by trajid.
 receives as arguments (self, particles, tracers) where particles,
 tracers are the sequence iteration results as given by __iter__.
 subrange - tuple (first, last). Iterate over a subrange of the sequence
 delimited by these frame numbers.
 history - true if the result of one frame depends on earlier results.
 If true, func receives a 4th argument, the accumulated results so
 far as a dictionary of time-series lists.
 args - a tuple of extra positional arguments to pass to the function
 after the usual arguments and the possible history argument.

 Returns:
 a dictionary keyed by trajid, where for each trajectory a time series
 of results obtained during the trajectory's lifetime is the value.
 """
 if subrange is None:
 subrange = self._rng
 trajects = self.particle_trajectories()

 # Allocate result space:
 res = {}
 frame_counters = {}

 # Initialize result buffer and frame counter per trajectory.
 for tr in trajects:
 trid = tr.trajid()
 t = tr.time()[:-1]

 # This handles trajectories partly out of subrange bounds.
 in_range = (t >= subrange[0]) & (t < subrange[1])
 len_in_range = in_range.sum()

 if len_in_range < 1:
 continue

 res[trid] = [None]*len_in_range
 frame_counters[trid] = 0

 for frame, next_frame in self.iter_subrange(*subrange):
 if history:
 fargs = (self, frame, next_frame, res) + args
 else:
 fargs = (self, frame, next_frame) + args
 frm_res = func(*fargs)

 for k, v in frm_res.iteritems():
 res[k][frame_counters[k]] = v
 frame_counters[k] += 1

 for k in res.keys():
 res[k] = np.array(res[k])
 return res

[docs] def save_config(self, cfg):
 """
 Adds the keys necessary for recreating this sequence into a
 configuration object. It is the caller's responsibility to do a
 writeback to file.

 Arguments:
 cfg - a ConfigParser object.
 """
 if not cfg.has_section("Particle"):
 cfg.add_section("Particle")
 cfg.set("Particle", "diameter", str(self.part.diam))
 cfg.set("Particle", "density", str(self.part.density))

 if not cfg.has_section("Scene"):
 cfg.add_section("Scene")
 cfg.set("Scene", "frame rate", str(self.frate))
 cfg.set("Scene", "first frame", str(self._rng[0]))
 cfg.set("Scene", "last frame", str(self._rng[1] - 1))
 cfg.set("Scene", "apply smoothing", "yes" if self._smooth else "no")
 cfg.set("Scene", "trajectory minimal length", str(self._minlen))

 # Need to escape these because of ConfigParser's 'magic variables'.
 cfg.set("Scene", "tracers file", self._trtmpl.replace('%', '%%', 1))
 cfg.set("Scene", "particles file", self._ptmpl.replace('%', '%%', 1))

[docs]def read_sequence(conf_fname, smooth=None, traj_min_len=None):
 """
 Read sequence-wide parameters, such as unchanging particle properties and
 frame range. Values are stored in an INI-format file.

 Arguments:
 conf_fname - name of the config file
 smooth - whether the sequence shoud use tracers trajectory-smoothing. Used
 to override the config value if present, and supply it if missing. If
 None and missing, default is False.
 traj_min_len - tells the sequence to ignore trajectories shorter than this
 many frames. Overrides file. If None and file has no value, default is
 0.

 Returns:
 a Sequence object initialized with the configuration values found.
 """
 parser = SafeConfigParser()
 parser.read(conf_fname)

 particle = Particle(
 parser.getfloat("Particle", "diameter"),
 parser.getfloat("Particle", "density"))

 frate = parser.getfloat("Scene", "frame rate")
 tracer_tmpl = parser.get("Scene", "tracers file")
 part_tmpl = parser.get("Scene", "particles file")
 frange = (parser.getint("Scene", "first frame"),
 parser.getint("Scene", "last frame") + 1)

 # The smoothing option is subject to default/override rules.
 if parser.has_option("Scene", "apply smoothing"):
 if smooth is None:
 smooth = parser.getboolean("Scene", "apply smoothing")
 else:
 if smooth is None:
 smooth = False

 # Same goes for traj_min_len
 if parser.has_option("Scene", "trajectory minimal length"):
 if traj_min_len is None:
 traj_min_len = parser.getint("Scene", "trajectory minimal length")
 else:
 if traj_min_len is None:
 traj_min_len = 0

 return Sequence(frange, frate, particle, part_tmpl, tracer_tmpl, smooth,
 traj_min_len)

 © Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

_static/up.png

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Flowtracks 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

_modules/flowtracks/graphics.html

 Navigation

 		
 index

 		
 modules |

 		Flowtracks 1.0 documentation »

 		Module code »

 Source code for flowtracks.graphics

-*- coding: utf-8 -*-
Created on Sun Sep 22 16:11:34 2013

"""
Various specialized graphing routines. The Probability Density Function
graphing is best accessed by calling :func:`pdf_graph` on the raw data, but
you can generate the PDF from the data separately (e.g. using
:func:`pdf_bins`) and calling :func:`generalized_histogram_disp` on the
result.

The other facility here is a function to plot a time-dependent 3D vector as
3 component subplots, which is another customary presentation in fluid
dynamics circles. See :func:`plot_vectors`.
"""

import numpy as np, matplotlib.pyplot as pl

[docs]def pdf_bins(data, num_bins, log_bins=False):
 """
 Generate a PDF of the given data possibly with logarithmic bins, ready for
 using in a histogram plot.

 Arguments:
 data - the samples to histogram.
 bins - the number of bins in the histogram.
 log_bins - if True, the bin edges are equally spaced on the log scale,
 otherwise they are linearly spaced (a normal histogram). If True,
 ``data`` should not contain zeros.

 Returns:
 hist - num_bins-lenght array of density values for each bin.
 bin_edges - array of size num_bins + 1 with the edges of the bins including
 the ending limit of the bins.
 """
 if log_bins:
 data = data[data > 0]
 minv = np.min(data)
 bins = np.logspace(np.log10(minv), np.log10(data.max()), num_bins + 1)
 else:
 bins = num_bins

 hist, bin_edges = np.histogram(data, bins=bins, density=True)
 return hist, bin_edges

[docs]def generalized_histogram_disp(hist, bin_edges, log_bins=False,
 log_density=False, marker='o'):
 """
 Draws a given histogram according to the visual custom of the fluid
 dynamics community.

 Arguments:
 hist - an array containing the number of values (or density) for each bin.
 bin_edges - the start value of each bin, same length as ``hist``.
 log_bins - indicates that the bin edges are log-spaced.
 log_densify - Show the log of the probability density value. May cause
 problems if ``log_bins`` is True.
 marker - marker style for matplotlib.

 Returns:
 the list of lines drawn, Matplotlib objects.
 """
 if log_bins:
 plt = pl.loglog if log_density else pl.semilogx
 else:
 plt = pl.semilogy if log_density else pl.plot

 lines = plt(bin_edges, hist, marker)
 pl.ylabel("Probability density [-]")

 return lines

[docs]def pdf_graph(data, num_bins, log=False, log_density=False, marker='o'):
 """
 Draw a PDF of the given data, according to the visual custom of
 the fluid dynamics community, and possibly with logarithmic bins.

 Arguments:
 data - the samples to histogram.
 bins - the number of bins in the histogram.
 log - if True, the bin edges are equally spaced on the log scale, otherwise
 they are linearly spaced (a normal histogram). If True, ``data`` should
 not contain zeros.
 log_density - Show the log of the probability density value. Only if log
 is False.
 marker - override the circle marker with any string acceptable to
 matplotlib.
 """
 hist, bin_edges = pdf_bins(data, num_bins, log)
 generalized_histogram_disp(hist, bin_edges[:-1], log, log_density,
 marker='-' + marker)

[docs]def plot_vectors(vecs, indep, xlabel, fig=None, marker='-',
 ytick_dens=None, yticks_format=None, unit_str=""):
 """
 Plot 3D vectors as 3 subplots sharing the same independent axis.

 Arguments:
 vecs - an (n,3) array, with n vectors to plot against the independent
 variable.
 indep - the corresponding n values of the independent variable.
 xlabel - label for the independent axis.
 fig - an optional figure object to use. If None, one will be created.
 ytick_dens - if not None, place this many yticks on each subplot, instead
 of the automatic tick marks.
 yticks_format - a pyplot formatter object.
 unit_str - a string to add to the Y labels representing the vector's units.

 Returns:
 fig - the figure object used for plotting.
 """
 fig = pl.figure(None if fig is None else fig.number)

 labels = ("X " + unit_str, "Y" + unit_str, "Z" + unit_str)
 for subplt in xrange(3):
 pl.subplot(3,1,subplt + 1)
 pl.plot(indep, vecs[:,subplt], marker)
 pl.gca().get_xaxis().set_visible(False)
 pl.grid()
 pl.ylabel(labels[subplt])

 if yticks_format is not None:
 pl.gca().get_yaxis().set_major_formatter(yticks_format)

 if ytick_dens is not None:
 loc, _ = pl.yticks()
 pl.yticks(np.linspace(vecs[:,subplt].min(), vecs[:,subplt].max(),
 ytick_dens))

 pl.gca().get_xaxis().set_visible(True)
 pl.xlabel(xlabel)
 return fig

 © Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

_modules/flowtracks/an_scene.html

 Navigation

 		
 index

 		
 modules |

 		Flowtracks 1.0 documentation »

 		Module code »

 Source code for flowtracks.an_scene

-*- coding: utf-8 -*-

import tables, itertools as it, numpy as np
from .scene import read_dual_scene

[docs]class AnalysedScene(object):
 """
 A class for accessing data and analyses of a scene analysed and saved in
 the format used by flowtracks.analysis.analyse().
 """

 def __init__(self, analysis_file):
 """
 Initializes the objects according to config and data-source metadata
 saved in the analysis file.

 Arguments:
 analysis_file - path to the HDF file containing analysis results.
 """
 self._file = tables.open_file(analysis_file, "r")
 self._table = self._file.get_node('/analysis')

 config = self._table.attrs['config']
 self._scene = read_dual_scene(config)

 # Cache data on user-visible columsn:
 filt = ('trajid', 'time')
 self._keys = []
 self._shapes = []
 desc = self._table.coldescrs
 for name in self._table.colnames:
 if name in filt:
 continue
 self._keys.append(name)
 shape = desc[name].shape
 self._shapes.append(1 if len(shape) == 0 else shape[0])

 def __del__(self):
 self._file.close()

[docs] def keys(self):
 """
 Return names that may be used to access data in any of the data sources
 available, whether analyses or inertial particles.
 """
 return self._scene.get_particles().keys() + self._keys

[docs] def shapes(self):
 """
 Return the number of components per item of each key in the order
 returned by :meth:`keys`.
 """
 return self._scene.get_particles().shapes() + self._shapes

 def _iter_frame_arrays(self, cond=None):
 """
 Private. Breaks the file down to its frames, and makes arrays of
 them, iteratively. Also allows filtering the frames.

 Arguments:
 cond - an optional PyTables condition string to apply to each frame.
 """
 query_string = '(time == t)'
 if cond is not None:
 query_string = '&'.join([query_string, cond])

 for t in xrange(*self._scene.get_range()):
 yield t, self._table.read_where(query_string)

[docs] def collect(self, keys, where=None):
 """
 Get values of a given key, either some of them or the ones
 corresponding to a selection given by 'where'

 Arguments:
 keys - a list of keys to take from the data
 where - a dictionary of derived-results keys, with a tuple
 (min,max,invert) as values. If ``invert`` is false, the search
 range is between min and max. Otherwise it is anywhere except that.

 Returns:
 a list of arrays, in the order of ``keys``.
 """
 # Divide the where condition into the trajectory conditions and
 # analysis conditions.
 part_cond = None
 an_cond = None

 pkeys = self._scene.get_particles().keys()
 if where is not None:
 pc_add = []
 an_cond_add = []

 for key, rng in where.iteritems():
 cop1, cop2, lop = ('<','>=','|') if rng[2] else ('>=','<','&')
 cond_string = "((%s %s %g) %s (%s %s %g))" % \
 (key, cop1, rng[0], lop, key, cop2, rng[1])

 if key in pkeys:
 pc_add.append(cond_string)
 else:
 an_cond_add.append(cond_string)

 if len(pc_add) != 0:
 part_cond = ' & '.join(pc_add)
 if len(an_cond_add) != 0:
 an_cond = ' & '.join(an_cond_add)

 # Iterate over dual frame, each from the right source using the
 # divided conditions.
 res = dict((k, []) for k in keys)

 dframe_it = it.izip(
 self._scene.get_particles()._iter_frame_arrays(part_cond),
 self._iter_frame_arrays(an_cond))

 for tr_frm, an_frm in dframe_it:
 # Cross reference matching rows.
 tp, p_arr = tr_frm
 ta, a_arr = an_frm

 p_trids = p_arr['trajid']
 a_trids = a_arr['trajid']
 trajids = set(p_trids) & set(a_trids)

 # select only those from the two frames:
 in_p = np.array([True if tr in trajids else False \
 for tr in p_trids])
 in_a = np.array([True if tr in trajids else False \
 for tr in a_trids])

 if len(in_p) > 0:
 p_arr = p_arr[in_p]
 if len(a_arr) > 0:
 a_arr = a_arr[in_a]

 # For each dual frame, add the columns of specified keys to the list
 # of that key's results
 for k in keys:
 if k in pkeys:
 res[k].append(p_arr[k])
 else:
 res[k].append(a_arr[k])

 # stack and return.
 return [np.concatenate(res[k], axis=0) for k in keys]

 © Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

_modules/flowtracks/analysis.html

 Navigation

 		
 index

 		
 modules |

 		Flowtracks 1.0 documentation »

 		Module code »

 Source code for flowtracks.analysis

-*- coding: utf-8 -*-
Created on Mon Aug 11 15:14:21 2014
"""
Infrastructure for running a frame-by-frame analysis on a DualScene object.
The main point of interest here is :func:`analysis`, which performs a segment
iteration over a :class:`~flowtracks.scene.DualScene` and applies to each
a user-selected list of analyzers. Analysers are instances of a
:class:`GeneralAnalyser` subclass which implements the necessary methods,
as described in the base class documentation.

There is one base class supplied here, :class:`FluidVelocitiesAnalyser`,
which ties in the :mod:`flowtracks.interpolation` module for analysing the
fluid velocity around a particle from its surrounding tracers.
"""

import numpy as np, tables

[docs]class GeneralAnalyser(object):
 """
 This is the parent class for all analysers to be used by :func:`analysis`.
 It does not do anything but define and document the methods that must be
 implenmented by the child class (in other words, this class is abstract).
 Attempting to use its methods will result in a ``NotImplementedError``.
 """
[docs] def descr(self):
 """
 Need to return a list of tuples, each of the form
 (name, data type, row length), e.g. ('trajid', int, 1)
 """
 raise NotImplementedError

[docs] def analyse(self, frame, next_frame):
 """
 Arguments:
 frame, next_frame - the Frame object for the currently-analysed frame
 and the one after it, respectively.

 Returns:
 a list of arrays, each of shape (f,d) where f is the number of
 particles in the current frame, and d is the row length of the
 corresponding item returned by self.descr(). Each array's dtype also
 corresponds to the dtype given to it by self.descr().
 """
 raise NotImplementedError

[docs]class FluidVelocitiesAnalyser(GeneralAnalyser):
 """
 Finds, for each particle in the ``particles`` set of a frame, the
 so-called *undisturbed* fluid velocity at the particle's position, by
 interpolating from nearby particles in the ``tracers`` set.
 """
 def __init__(self, interp):
 """
 Arguments:
 interp - the Interpolant object to use for finding velocities.
 """
 self._interp = interp

[docs] def descr(self):
 """
 Return a list of two tuples, each of the form
 (name, data type, row length), describing the arrays returned by
 analyse() for fluid velocity and relative velocity.
 """
 return [('fluid_vel', float, 3), ('rel_vel', float, 3)]

[docs] def analyse(self, frame, next_frame):
 """
 Arguments:
 frame, next_frame - the Frame object for the currently-analysed frame
 and the one after it, respectively.

 Returns:
 a list of two arrays, each of shape (f,3) where f is the number of
 particles in the current frame. 1st array - fluid velocity. 2nd array
 - relative velocity.
 """
 vel_interp = self._interp(frame.tracers.pos(), frame.particles.pos(),
 frame.tracers.velocity())
 rel_vel = frame.particles.velocity() - vel_interp

 return [vel_interp, rel_vel]

[docs]def analysis(scene, analysis_file, conf_file, analysers, frame_range=-1):
 """
 Generate the analysis table for a given scene with separate data for
 inertial particles and tracers.

 Arguments:
 scene - a DualScene object representing an experiment with coordinated
 particles and tracers data streams.
 analysis_file - path to the file where analysis should be saved. If the
 file exists, it will be cloberred.
 conf_file - name of config file used for creating the analysis.
 analysers - a list of GeneralAnalyser subclasses that do the actual
 analysis work and know all that is needed about output shape.
 frame_range - if -1 no adjustment is necessary, otherwise see
 :meth:`DualScene.iter_segments() <flowtracks.scene.DualScene.iter_segments>`
 """
 # Structure the output file:
 descr = [('trajid', int, 1), ('time', int, 1)]
 for analyser in analysers:
 descr.extend(analyser.descr())
 descr = np.dtype(descr)

 outfile = tables.openFile(analysis_file, "w", title="Analysis results.")
 table = outfile.create_table('/', 'analysis', descr)
 table.attrs['config'] = conf_file
 table.attrs['trajects'] = scene.get_particles_path()

 for frame, next_frame in scene.iter_segments(frame_range):
 length = len(frame.particles)
 arr = np.empty(length, dtype=descr)
 arr['trajid'] = frame.particles.trajid()
 arr['time'] = frame.particles.time()

 for analyser in analysers:
 analysis = analyser.analyse(frame, next_frame)
 this_descr = analyser.descr()

 for res, desc in zip(analysis, this_descr):
 arr[desc[0]] = res

 table.append(arr)

 # Wrap up and close.
 table.cols.trajid.create_index()
 table.cols.time.create_index()
 outfile.flush()
 outfile.close()

 © Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

_static/repeated_interpolation.html

As an example of using repeated interpolation at the same place, this notebook performs a consistency-checking process, a simplified version of the method introduced by B. Lüthi [1]

Our first move is to open the dual (tracers + inertial particles) scene data. If you are not familiar with the DualScene class yet, the notebook doc/hdf5_scene_analysis.ipynb has the introduction you need.

In [15]:

%cd ../data
from flowtracks.scene import read_dual_scene
scene = read_dual_scene('../data/seq_hdf.cfg')

/home/yosef/postptv/data

We'll use Inverse Distance Weighting, so as not to weigh down the computation. Furthermore, we tell the interpolant to select candidate tracers within a certain radius. Inside this radius, we'll be able to take subsamples of any size, as we'll later see.

In [16]:

from flowtracks.interpolation import Interpolant
interp = Interpolant('inv', None, radius=0.010, param=1.5)

Now, let's find a nice frame and pick a particle with enough tracers around it (at least 10 in this case, so we have enough subsamples to do statistics).

In [17]:

import numpy as np

for frame, _ in scene.iter_segments(-1): # recall that iter_segments returns two consecutive frames.
 if len(frame.tracers) == 0:
 continue

 # Here we start to use the repeated-interpolation machinery,
 # By informing the interpolant of the current frame data,
 # and then querying it about that data without having to repeat it.
 interp.set_scene(frame.tracers.pos(), frame.particles.pos(),
 frame.tracers.velocity())
 neighb_base = interp.which_neighbours()

 # Check that we have a particle with the desired number of tracers.
 candidates = neighb_base.sum(axis=1) >= 10
 if candidates.any():
 break

Note that we found one already in the first frame, but that was to be expected. The loop is usually necesary when you are not just looking for one particle, but either you are doing a statistic of several particles, or you have very strict search criteria which wouldn't be matched exactly right away.

In [18]:

frame.particles.time()

 Out[18]:

10001

Anyway, we have a particle. So now we can tell the interpolant that from now on, this will be the only interpolation point, by giving a mask containing only one True value.

In [19]:

selector = np.ones_like(candidates)
selector[candidates.nonzero()[0][0]] = False # The first with enough tracers.
interp.trim_points(selector)

Now the gist of the method is that we go over different combinations of 4 particles out of the neighbour 10, and check the standard deviation of interpolation results, compared to their RMS.

In [22]:

from scipy.misc import comb
num_combs = min([50, comb(10, 4, exact=True)])

Collect loop results:
samples = np.empty((num_combs, 3))

All combinations are generated using these arrays, based on the
initial full-neighbour selection.
neighb_base = interp.which_neighbours()
where_active = np.nonzero(neighb_base[0])[0]
neighb_comb = np.empty_like(neighb_base)

for cix in xrange(num_combs):
 neighb_comb[...] = False
 neighb_ix = np.random.permutation(where_active)[4]
 neighb_comb[0, neighb_ix] = True

 samples[cix] = interp.interpolate(neighb_comb)

Finally, the statistics:
rms = np.linalg.norm(samples, axis=0) / np.sqrt(num_combs)
rel_std = np.std(samples, axis=0)/ rms # num_parts x 3
print "Relative standard deviation: " + str(rel_std)

Relative standard deviation: [0.97986067 0.77922932 0.90291174]

Well, this particle seems to have relatively inconsistent fluid velocity interpolation, although in the Y coordinate prediction is more consistent than the others. Well then. Let's not get discouraged: there are many more particles in the data set, and surely by averaging over all of them, we can find the true consistency of the data set. But this is not for a short tutorial like this.

References:

[1] B. Lüthi et al., Lagrangian multi-particle statistics, 2007, DOI: 10.1080/14685240701522927

_static/file.png

_static/down-pressed.png

_modules/flowtracks/scene.html

 Navigation

 		
 index

 		
 modules |

 		Flowtracks 1.0 documentation »

 		Module code »

 Source code for flowtracks.scene

-*- coding: utf-8 -*-
#Created on Sun Aug 10 11:28:42 2014
#
Private references:
[1] https://docs.python.org/2/library/itertools.html
"""
A module for manipulating PTV analyses saved as HDF5 files in the flowtracks
format. Allows reading the data by iterating over frames or over trajectories.

Main design goals:

1. Keep as little as possible in memory.
2. Minimize separate file accesses by allowing reading by frames instead of \
 only by trajectories as in the old code.

"""

import itertools as it, tables, numpy as np
from ConfigParser import SafeConfigParser

from .trajectory import Trajectory, ParticleSnapshot
from .particle import Particle

class Frame(object):
 pass

def pairwise(iterable):
 """
 copied from itertools documentation, [1]
 s -> (s0,s1), (s1,s2), (s2, s3), ...
 """
 a, b = it.tee(iterable)
 next(b, None)
 return it.izip(a, b)

[docs]class Scene(object):
 """
 This class is the programmer's interface to an HDF files containing
 particle trajectory data. It manages access by frames or trajectories,
 as well as by segments.
 """
 def __init__(self, file_name, frame_range=None):
 """
 Arguments:
 file_name - path to the HDF file hilding the data.
 frame_range - use only frames in this range for iterating the data.
 the default is None, meaning to use all present frams.
 """
 self._file = tables.open_file(file_name)
 self._table = self._file.get_node('/particles')
 self._trids = np.unique(self._table.col('trajid'))
 self.set_frame_range(frame_range)

 # Cache data on user-visible columsn:
 filt = ('trajid', 'time')
 self._keys = []
 self._shapes = []
 desc = self._table.coldescrs

 for name in self._table.colnames:
 if name in filt:
 continue
 self._keys.append(name)
 shape = desc[name].shape
 self._shapes.append(1 if len(shape) == 0 else shape[0])

[docs] def set_frame_range(self, frame_range):
 """
 Prepare a query part that limits the frame numbers is needed.

 Arguments:
 frame_range - a tuple (first, last) frame number, with the usual
 pythonic convention that first <= i < last. Any element may be
 None, in which case no limit is generated for it, and for no limits
 at all, passing none instead of a tuple is acceptable.
 """
 self._frame_limit = ""

 if frame_range is None:
 t = self._table.col('time')
 self._first = int(t.min())
 self._last = int(t.max()) + 1
 return

 first, last = frame_range
 if first is None:
 t = self._table.col('time')
 self._first = int(t.min())
 else:
 self._first = first
 self._frame_limit += " & (time >= %d)" % first

 # Working on the assumptions that usually not both will be None
 # (then you can simply pass None), to simplify the code.
 if last is None:
 t = self._table.col('time')
 self._last = int(t.max()) + 1
 else:
 self._last = last
 self._frame_limit += " & (time < %d)" % last

 def __del__(self):
 self._file.close()

[docs] def keys(self):
 """
 Return all the possible trajectory properties that may be queried as
 a data series (i.e. not the scalar property trajid), as a list of
 strings.
 """
 return self._keys

[docs] def shapes(self):
 """
 Return the number of components per item of each key in the order
 returned by ``keys()``.
 """
 return self._shapes

[docs] def iter_trajectories(self):
 """
 Iterator over trajectories. Generates a Trajectory object for each
 trajectory in the file (in no particular order, but the same order
 every time on the same PyTables version) and yields it.
 """
 query_string = '(trajid == trid)' + self._frame_limit

 for trid in self._trids:
 arr = self._table.read_where(query_string)
 kwds = dict((field, arr[field]) for field in arr.dtype.fields \
 if field != 'trajid')
 kwds['trajid'] = trid
 yield Trajectory(**kwds)

[docs] def iter_frames(self):
 """
 Iterator over frames. Generates a ParticleSnapshot object for each
 frame, in the file, ordered by frame number, and yields it.
 """
 for t, arr in self._iter_frame_arrays():
 kwds = dict((field, arr[field]) for field in arr.dtype.fields \
 if field != 'time')
 kwds['time'] = t
 yield ParticleSnapshot(**kwds)

 def _iter_frame_arrays(self, cond=None):
 """
 Private. Like iter_frames but does not create a ParticleSnapshot
 object, leaving the raw array. Also allows heavier filtering.

 Arguments:
 cond - an optional PyTables condition string to apply to each frame.
 """
 query_string = '(time == t)'
 if cond is not None:
 query_string = '&'.join(query_string, cond)

 for t in xrange(self._first, self._last):
 yield t, self._table.read_where(query_string)

[docs] def iter_segments(self):
 """
 Iterates over frames, taking out only the particles whose trajectory
 continues in the next frame.

 Yields:
 frame - a ParticleSnapshot object representing the current frame with
 the particles that have continuing trajectories.
 next_frame - same object, for the same particles in the next frame
 (the time attribute is obviously +1 from ``frame``).
 """
 for arr, next_arr in pairwise(self._iter_frame_arrays()):
 t, arr = arr
 tn, next_arr = next_arr

 # find continuing trajectories:
 arr_trids = arr['trajid']
 next_arr_trids = next_arr['trajid']
 trajids = set(arr_trids) & set(next_arr_trids)

 # select only those from the two frames:
 in_arr = np.array([True if tr in trajids else False \
 for tr in arr_trids])
 in_next_arr = np.array([True if tr in trajids else False \
 for tr in next_arr_trids])

 if len(in_arr) > 0:
 arr = arr[in_arr]
 if len(in_next_arr) > 0:
 next_arr = next_arr[in_next_arr]

 # format as ParticleSnapshot.
 kwds = dict((field, arr[field]) for field in arr.dtype.fields \
 if field != 'time')
 kwds['time'] = t
 frame = ParticleSnapshot(**kwds)

 kwds = dict((field, next_arr[field]) for field in arr.dtype.fields \
 if field != 'time')
 kwds['time'] = tn
 next_frame = ParticleSnapshot(**kwds)

 yield frame, next_frame

[docs]class DualScene(object):
 """
 Holds a scene orresponding to the dual-PTV systems, which shoot separate
 but coordinated streams for the tracers data and inertial particles data.
 """
 def __init__(self, tracers_path, particles_path, frate, particle,
 frame_range=None):
 """
 Arguments:
 tracers_path, particles_path - respectively the path to the tracers
 and particles HDF files.
 frate - frame rate at which the scene was shot, [1/s].
 particle - a Particle object describing the inertial particles'
 diameter and density.
 frame_range - a uniform frame range to set to both of them. The
 default is None, meaning to use all frames (assuming
 equal-length data streams)
 """
 self.frate = frate
 self.part = particle

 self._paths = (tracers_path, particles_path)
 self._tracers = Scene(tracers_path, frame_range)
 self._particles = Scene(particles_path, frame_range)
 self._rng = frame_range # for restoring it after iteration.

[docs] def get_particles_path(self):
 """
 Returns the path to the HDF file holding inertial particle data
 """
 return self._paths[1]

[docs] def get_particles(self):
 """
 Returns the :class:`Scene` that manages inertial particles' data.
 """
 return self._particles

[docs] def get_range(self):
 """
 Returns the frame renge set for the dual scene.
 """
 return self._rng

[docs] def iter_frames(self, frame_range=-1):
 """
 Iterates over a scene represented by two HDF files (one for inertial
 particles, one for tracers), and returns a Frame object whose two
 attributes (.tracers, .particles) hold a corresponding
 ParticleSnapshot object.

 Arguments:
 frame_range - tuple (first, last) sets the frame range of both scenes
 to an identical frame range. Argument format as in
 Scene.set_frame_range(). Default is (-1) meaning to skip this.
 Then the object's initialization range is used, so initialize
 to a coordinated range if you use the default.

 Yields:
 the Frame object for each frame in turn.
 """
 if frame_range != -1:
 self._particles.set_frame_range(frame_range)
 self._tracers.set_frame_range(frame_range)

 for particles, tracers in it.izip(
 self._particles.iter_frames(), self._tracers.iter_frames()):
 frame = Frame()
 frame.tracers = tracers
 frame.particles = particles
 yield frame

 # restore original frame range.
 if frame_range != -1:
 self._particles.set_frame_range(self._rng)
 self._tracers.set_frame_range(self._rng)

[docs] def iter_segments(self, frame_range=-1):
 """
 Like iter_frames, but returns two consecutive frames, both having the
 same trajids set (in other words, both contain only particles from
 the first frame whose trajectory continues to the next frame).

 Arguments:
 frame_range - tuple (first, last) sets the frame range of both scenes
 to an identical frame range. Argument format as in
 Scene.set_frame_range(). Default is (-1) meaning to skip this.
 Then the object's initialization range is used, so initialize
 to a coordinated range if you use the default.

 Yields:
 two Frame objects, representing the consecutive selective frames.
 """
 if frame_range != -1:
 self._particles.set_frame_range(frame_range)
 self._tracers.set_frame_range(frame_range)

 for part_frames, tracer_frames in it.izip(
 self._particles.iter_segments(), self._tracers.iter_segments()):
 frame = Frame()
 frame.tracers = tracer_frames[0]
 frame.particles = part_frames[0]

 next_frame = Frame()
 next_frame.tracers = tracer_frames[1]
 next_frame.particles = part_frames[1]

 yield frame, next_frame

 # restore original frame range.
 if frame_range != -1:
 self._particles.set_frame_range(self._rng)
 self._tracers.set_frame_range(self._rng)

[docs]def read_dual_scene(conf_fname):
 """
 Read dual-scene parameters, such as unchanging particle properties and
 frame range. Values are stored in an INI-format file.

 Arguments:
 conf_fname - name of the config file

 Returns:
 a DualScene object initialized with the configuration values found.
 """
 parser = SafeConfigParser()
 parser.read(conf_fname)

 particle = Particle(
 parser.getfloat("Particle", "diameter"),
 parser.getfloat("Particle", "density"))

 frate = parser.getfloat("Scene", "frame rate")
 tracer_file = parser.get("Scene", "tracers file")
 part_file = parser.get("Scene", "particles file")
 frange = (parser.getint("Scene", "first frame"),
 parser.getint("Scene", "last frame") + 1)

 return DualScene(tracer_file, part_file, frate, particle, frange)

 © Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_modules/flowtracks/trajectory.html

 Navigation

 		
 index

 		
 modules |

 		Flowtracks 1.0 documentation »

 		Module code »

 Source code for flowtracks.trajectory

-*- coding: utf-8 -*-

import types, numpy as np
import scipy.interpolate as interp

[docs]class Frame(object):
 """
 This is basically a structure with no fancy behaviour. When it is
 returned from a Flowtracks function, it has two attributes, ``particles``
 and ``tracers`` - each pointing to a :class:`ParticleSnapshot` object
 holding data for particles of the respective type.
 """
 pass

[docs]class ParticleSet(object):
 """
 A base class for manipulting particle data. Knows how many particles it
 has, and holds a varying number of particle properties, each given for
 the entire set. Properties may be created at construction time or later.

 When a property is created, it gets a setter method of the same name and
 a getter method prefixed with ``set_``. This applies also for mandatory
 properties.
 """
 def __init__(self, pos, velocity, **kwds):
 """
 Arguments:
 pos - a (t,3) array, the position of one particle in t time-points,
 [m].
 velocity - (t,3) array, corresponding velocity, [m/s].
 kwds - keyword arguments should be arrays whose first dimension == t.
 these are treated as extra attributes to be sliced when creating
 segments.
 """
 base_vals = {
 'pos': pos,
 'velocity': velocity,
 }
 base_vals.update(kwds)

 self._check_attr = [] # Attrs to look for when concatenating bundles
 for n, v in base_vals.iteritems():
 self.create_property(n, v)

[docs] def create_property(self, propname, init_val):
 """
 Add a property of the set, expected to be an array whose
 shape[0] == len(self).

 Creates the method <propname>(self, selector=None). If selector is
 given, it will return only the selected time-points. Also creates
 set_<propname>(self, value, selector=None) which sets either
 the value over the entire trajectory or just for the selected time
 points (this requires the property to already exist for the full
 trajectory).

 Arguments:
 propname - a string, should be a valid Python identifier.
 init_val - the initial value for the property.
 """
 attr = '_' + propname
 self._check_attr.append(propname)

 def getter(self, selector=None):
 if selector is None:
 return self.__dict__[attr]
 else:
 return self.__dict__[attr][selector]

 def setter(self, new_val, selector=None):
 if selector is None:
 self.__dict__[attr] = new_val
 else:
 self.__dict__[attr][selector] = new_val

 self.__dict__[propname] = \
 types.MethodType(getter, self, self.__class__)
 self.__dict__['set_' + propname] = \
 types.MethodType(setter, self, self.__class__)

 if init_val is not None:
 self.__dict__['set_' + propname](init_val)

[docs] def has_property(self, propname):
 """
 Checks whether the looked-after property ``propname`` exists for this
 particle set.
 """
 return (propname in self._check_attr)

[docs] def schema(self):
 """
 Creates a dictionary keyed by property name whose values are the shape
 of one particle's value for that property. Example: {'pos': (3,),
 'velocity': (3,)}
 """
 return dict((propname, self.__dict__['_' + propname].shape[1:]) \
 for propname in self._check_attr)

[docs] def ext_schema(self):
 """
 Extended schema. Like :meth:`schema` but the values of the returned
 dictionary are a tuple (type, shape). The shape is scalar, so it only
 supports 1D or 0D items.
 """
 schm = {}
 for propname in self._check_attr:
 prop = self.__dict__['_' + propname]
 shape = prop.shape[-1] if prop.ndim > 1 else 1
 schm[propname] = (prop.dtype.type, shape)

 return schm

[docs] def as_dict(self):
 """
 Returns a dictionary with the "business" properties only, without all
 the Python bookkeeping and other stuff in the __dict__.
 """
 return dict((propname, self.__dict__['_' + propname]) \
 for propname in self._check_attr)

[docs] def __len__(self):
 """Return the number of particles in the set."""
 return self._pos.shape[0]

[docs]class Trajectory(ParticleSet):
 """
 This is one of the two main classes used for iteration over a scene. It
 inherits from :class:`ParticleSet` with the added demand that a scalar
 trajectory ID (an integer unique amond the scene's trajectories) and a
 ``time`` property.
 """
 def __init__(self, pos, velocity, time, trajid, **kwds):
 """
 Arguments:
 pos - a (t,3) array, the position of one particle in t time-points,
 [m].
 velocity - (t,3) array, corresponding velocity, [m/s].
 time - (t,) array, the clock ticks. No specific units needed.
 trajid - the unique identifier of this trajectory in the set of
 trajectories that belong to the same sequence.
 kwds - keyword arguments should be arrays whose first dimension == t.
 these are treated as extra attributes to be sliced when creating
 segments.
 """
 self._id = trajid
 kwds['time'] = time
 ParticleSet.__init__(self, pos, velocity, **kwds)

 def trajid(self):
 return self._id

[docs] def __getitem__(self, selector):
 """
 Gets the data for time points selected as a table of shape (n,8),
 concatenating position, velocity, time, broadcasted trajid.

 Arguments:
 selector - any 1d indexing expression known to numpy.
 """
 return np.hstack((self._pos[selector], self._velocity[selector],
 self._time[selector][...,None],
 np.ones(self._pos[selector].shape[:-1] + (1,))*self._id))

[docs] def smoothed(self, smoothness=3.0):
 """
 Creates a trajectory generated from this trajectory using cubic
 B-spline interpolation.

 Arguments:
 smoothness - strength of smoothing, larger is smoother. See
 ``scipy.interpolate.splprep()``'s ``s`` parameter.

 Returns:
 a new :class:`Trajectory` object with the interpolated positions and
 velocities. If the length of the trajectory < 4, returns self.
 """
 k = 5
 if len(self.time()) < k + 1: return self

 spline, eval_prms = interp.splprep(list(self.pos().T),
 nest=-1, k=k)

 new_pos = np.array(interp.splev(eval_prms, spline)).T
 new_vel = np.array(interp.splev(eval_prms, spline, der=1)).T
 new_accel = np.array(interp.splev(eval_prms, spline, der=2)).T
 new_accel = np.vstack((new_accel, np.zeros(3)))

 return Trajectory(new_pos, new_vel, self.time(), self.trajid(),
 accel=new_accel)

[docs]class ParticleSnapshot(ParticleSet):
 """
 This is one of the two main classes used for iteration over a scene. It
 inherits from :class:`ParticleSet` with the added demand for a scalar
 time and a ``trajid`` property for trajectory ID (an integer unique
 among the scene's trajectories).
 """
 def __init__(self, pos, velocity, time, trajid, **kwds):
 """
 Arguments:
 pos - a (p,3) array, the position of one particle of p, [m].
 velocity - (p,3) array, corresponding velocity, [m/s].
 trajid - (p,3) array, for each particle in the snapshot, the unique
 identifier of the trajectory it belongs to.
 time - scalar, the identifier of the frame from which this snapshot
 is taken.
 kwds - keyword arguments should be arrays whose first dimension == p.
 these are treated as extra attributes to be sliced when creating
 segments.
 """
 self._t = time
 kwds['trajid'] = trajid
 ParticleSet.__init__(self, pos, velocity, **kwds)

 def time(self):
 return self._t

[docs]def mark_unique_rows(all_rows):
 """
 Filter out rows whose position columns represent a particle that already
 appears, so that each particle position appears only once.

 Arguments:
 all_rows - an array with n rows and at least 3 columns for position.

 Returns:
 an array with the indices of rows to take from the input such that in the
 result, the first 3 columns form a unique combination.
 """
 # Remove duplicates (particles occupying same position):
 srt = np.lexsort(all_rows[:,:3].T)
 diff = np.diff(all_rows[srt,:3], axis=0).any(axis=1)
 uniq = np.r_[srt[0], srt[1:][diff]]
 uniq.sort()

 return uniq

[docs]def trajectories_in_frame(trajects, frame_num,
 start_times=None, end_times=None, segs=False):
 """
 Notes the indices of trajectories participating in the frame for later
 extraction.

 Arguments:
 trajects - a list of :class:Trajectory objects to filter.
 frame_num - the time value (as found in trajectory.time()) at which the
 trajectory should be active.
 start_times, end_times - each a ``len(trajects)`` array containing the
 corresponding start/end frame number of each trajectory, respectively.
 segs - true if the trajectory should be active also in the following frame.

 Returns:
 traj_nums = the indices of active trajectories in ``trajects``.
 """
 if start_times is None or end_times is None:
 start_end = [(tr.time()[0], tr.time()[-1]) for tr in trajects]
 start_times, end_times = map(np.array, zip(*start_end))

 end_frm = (frame_num + 1) if segs else frame_num
 cands = (frame_num >= start_times) & (end_frm <= end_times)
 cand_nums = np.nonzero(cands)[0]

 if len(cand_nums) > 0:
 # Filter candidates with overlapping particles.
 frm_ixs = frame_num - start_times[cands]
 pos = np.array([trajects[trix].pos()[frm] \
 for trix, frm in zip(cand_nums, frm_ixs)])

 update_cands = np.zeros(pos.shape[0], dtype=np.bool)
 update_cands[mark_unique_rows(pos)] = True
 cands[cands] = update_cands
 cand_nums = np.nonzero(cands)[0]

 return cand_nums

[docs]def take_snapshot(trajects, frame, schema):
 """
 Goes over a list of trajectories and extracts the particle data at a given
 time point. If the trajectory list is empty, creates an empty snapshot.

 Arguments:
 trajects - a list of :class:Trajectory objects to query.
 frame - the frame number to which snapshot data belongs.
 schema - a dict, ``{propname: shape tuple}``, as given by the trajectory's
 :meth:`~.ParticleSet.schema`. This is only needed for consistency in
 the case of an empty trajectory list resulting in an empty snapshot.

 Returns:
 a :class:`ParticleSnapshot` object with all the particles in the given frame.
 """
 if len(trajects) == 0:
 kwds = dict((k, np.empty((0,) + v)) for k, v in schema.iteritems())
 kwds['time'] = frame
 return ParticleSnapshot(trajid=np.empty(0), **kwds)

 kwds = dict((k, np.empty(
 (len(trajects),) + v,
 dtype=trajects[0].__dict__['_' + k].dtype)) \
 for k, v in schema.iteritems())
 copy_keys = kwds.keys()
 kwds['trajid'] = np.empty(len(trajects), dtype=np.int_)

 for trix, traj in enumerate(trajects):
 first_frame = traj.time()[0]
 for prop in copy_keys:
 kwds[prop][trix] = traj.__dict__[prop](frame - first_frame)
 kwds['trajid'][trix] = traj.trajid()

 kwds['time'] = frame
 return ParticleSnapshot(**kwds)

 © Copyright 2015, Yosef Meller.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

